首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The formation and the properties of wormlike micelles in aqueous solutions of mixed cationic and anionic gemini surfactants, 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3(OH)-12) and O,O'-bis(sodium 2-dodecylcarboxylate)-p-benzenediol (C(12)?C(12)), have been studied by steady-state and dynamic rheological measurements at 25°C. With the addition of a small amount of C(12)?C(12) into the solution of 12-3(OH)-12, the total surfactant concentration of which was always kept at 80 mmol L(-1), the solution viscosity was strongly enhanced and its maximum was much larger than that of the mixed system of propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3-12) and C(12)?C(12). The results of dynamic rheology measurements showed that 12-3(OH)-12/C(12)?C(12) formed longer wormlike micelles in comparison with 12-3-12/C(12)?C(12). This was attributed to the effect of hydrogen bonding occurring between 12-3(OH)-12 molecules, which was an effective driving force promoting micellar growth. As few C(12)?C(12) participated in the micelles, the electrostatic attraction between the oppositely charged head groups of 12-3(OH)-12 and C(12)?C(12) made the molecules in the aggregates pack more tightly. This reinforced the hydrogen-bonding interactions and greatly promoted the micellar growth.  相似文献   

3.
Macroscopic and microscopic dissipative structural patterns form in the course of drying a series of aqueous solutions of polyoxyethylenealkyl ethers. The shift from the single round hill with accumulated surfactant molecules to the broad ring patterns of the hill in a macroscopic scale occurs as the HLB (hydrophile-liophile balance) of the surfactant molecules increases. The patterns correlate intimately with the HLB values of the surfactants. Microscopic patterns of small blocks, starlike patterns, and branched strings are formed. The size and shape of the surfactant molecules themselves influence the drying patterns in part. The pattern area and the time to dryness have been discussed as a function of surfactant concentration and HLB of the surfactants. The convection flow of water accompanying the surfactant molecules, the change in the contact angles at the drying frontier between solution and substrate in the course of dryness, and interactions among the surfactants and substrate are important for the macroscopic pattern formation. Microscopic patterns are determined in part by the shape and size of the molecules, translational Brownian movement of the surfactant molecules, and the electrostatic and hydrophobic interactions between surfactants and/or between the surfactant and substrate in the course of solidification.  相似文献   

4.
The aggregation behavior of mixed systems of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) or sodium bis(4-phenylbutyl) sulfosuccinate (SBPBS) with nonionic surfactant pentaethylene glycol mono-n-dodecyl ether (C12E5) have been studied by means of steady-state fluorescence, electrical conductivity, dynamic light scattering, transmission electron microscopy, electrophoretic light scattering and pyrene solubilization measurements. The critical concentrations for aggregation, micropolarity, mobility, solubilization capacity and morphology of aggregates are characterized. Two critical concentrations for aggregation are observed in the mixed surfactants, which may correspond to the formation of different kinds of aggregates. Moreover, it is more favorable for AOT-C12E5 to form mixed vesicles compared to SBPBS-C12E5 at higher mole fraction of C12E5. In addition, it is revealed that SBPBS-C12E5 mixture has larger solubilization capacity for pyrene than AOT-C12E5 system.  相似文献   

5.
We have investigated the formation of threadlike micelles consisting of anionic surfactants and certain additives in aqueous solution. Threadlike micelles long enough to be entangled with each other were formed in a clear aqueous solution of two anionic surfactants, sodium hexadecyl sulfate and sodium tetradecyl sulfate. These solutions also contained pentylammonium bromides or p-toluidine halides and exhibited remarkable viscoelasticity. Because the molar ratio of surfactants to cationic additives in these micelles seemed close to unity, they formed 1:1 stoichiometric complexes between surfactant anions and additive cations, as previously found in systems of cationic surfactants such as hexadecyltrimethylammonium bromide and sodium salicylate. The viscoelastic behavior of these anionic threadlike micellar systems was adequately described by a simple Maxwell element with a single relaxation time and strength, as in many similar cationic systems.  相似文献   

6.
7.
Wetting of low-energy solid surfaces (polymers, hydrophobized glass) with aqueous solutions of binary mixtures of cationic and nonionic surfactants was investigated at molar fractions of the cationic surfactant of 0.2, 0.5, and 0.8. In a narrow concentration range, the non-additive effect of wetting was observed: wetting of the solid surfaces with solutions of the mixtures is better than that would be expected from the additive behavior of the components. The magnitude of the effect depends on the surface energy of the solid substrate, total surfactant concentration in a mixture, and molar fraction of the cationic component. The wetting effect of surfactant mixtures with respect to low-energy solid surfaces can be predicted using the surface tension isotherms.  相似文献   

8.
The effect of three anionic, hairy-rod fluorene based conjugated polyelectrolytes on the cloud points of the alkyloxyethylene surfactants C10E3, C12E4, C12E5, and C12E6 has been studied in aqueous solution. Although the association behaviour of these rigid polymers with surfactants is different from that of more flexible polyelectrolytes, both types of polymers are seen to increase the cloud points, probably as a consequence of associative interactions. The possible importance of Coulombic interactions is suggested by the decrease in cloud points with these systems in the presence of NaCl. With the conjugated polyelectrolytes, the effect appears to be most pronounced with poly[9,9-bis(4-phenoxybutylsulfonate)fluorene-co-2,5-thienylene], which may result from specific interactions between oxyethylene groups and the thiophene ring. The value of cloud point behaviour in designing water based formulations for preparation of devices of these conjugated polyelectrolytes is discussed.  相似文献   

9.
A new fluorescent probe, methylamino derivative of pyrene, has been considered to characterize the concentration dependent emission behavior of an aqueous solution of anionic surfactants, viz., SDS, DSS, and SDBS. It was found that the emission of the probe is uniquely sensitive to the changes in surfactant (anionic) concentration due to the functional group effect of the probe over the parent moiety, pyrene. Here, 1-methylaminopyrene (MAP) showed significant quenching of emission well below the critical micellar concentration (cmc) of the surfactant. Excimer emission of the probe due to the formation of premicellar aggregates of the surfactant solutions at a concentration close to but below the cmc and again an enhanced emission of the probe above the cmc were observed as a consequence of definite MAP-surfactant interactions. These observations assisted the possible quantification ofsurfactant concentrations and their chain length dependent premicellar aggregate formations. Significant monomer emission in relation to probe distribution in micelle was analytically authenticated. Dynamic light scattering (DLS) studies revealed the incorporation of the probe molecules in the micellar core. The fluorophore emission showed nonlinear behavior when the surfactant concentration was far above the cmc. Abrupt changes in the emission characteristics in relation to the micellar concentration led to the determination of the cmc of the surfactants.  相似文献   

10.
The self-assembly behavior of polyethoxylate-based multicomponent nonionic surfactants was studied. Using the dynamic light scattering method, thermodynamical parameters such as the critical micelle concentration (cmc) and hydrophile-lipophile balance (HLB), as well as the micelle size and micelle size distribution, were determined. The number average molecular weight and number average HLB of the samples were determined by MALDI-TOF-MS and 1H NMR techniques, and the data were evaluated. A connection was found between the HLB and the ln(cmc) value of the samples which can be described by a simple equation. Using this equation and plotting ln(cmc) versus the average number of ethylene oxide units, lines were obtained at different temperatures, and their slope allowed the calculation of the contribution of a single ethylene oxide unit to the Gibbs free energy of micellization.  相似文献   

11.
The phase behavior of aqueous solutions of mixed cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS) was examined at different temperatures (20, 30, 40, and 50 degrees C). While stable vesicles were formed in a narrow composition range on the SOS-rich side at 20 degrees C, the range widened remarkably when the temperature was raised to 30 degrees C. Thus, the vesicle region extended to cover almost the entire composition range, CTAB:SOS = 0.5:9.5-5.0:5.0, at the total surfactant concentrations of 50-70 mM on the SOS-rich side. To analyze the temperature dependence of this phase behavior of the mixed surfactant system, DSC and fluorescence polarization measurements were performed on the system. The experimental findings obtained revealed that pseudo-double-tailed CTAB/SOS complex, the major component of the bimolecular membrane formed by the surfactant mixture, undergoes a gel (Lbeta)-liquid crystal (Lalpha) phase transition at about 26 degrees C. This phenomenon was interpreted as showing that the bimolecular membrane has no curvature and is rigid and easy to precipitate at temperatures below the phase transition point, whereas it has a curvature and is loose enough to disperse in the solution as vesicles at temperatures above the phase transition point. Vesicles formed by the anionic/cationic surfactant complex were then stable at temperatures above the phase transition temperature of the complex.  相似文献   

12.
Various chiral N-palmitoyl amino acid surfactants (AAS) derived from methionine, proline, leucine, threonine, phenylalanine and phenylglycine were prepared and converted to their sodium salt. The properties of the aggregates formed in aqueous solution were studied for both the optically-active compounds and their racemic mixture. Characterization was made by surface tensiometry, fluorimetry, dynamic light scattering, circular dichroism (CD) and transmission electron microscopy. It appeared that most of the AAS studied in this work spontaneously formed different types of aggregates, including micrometer-sized aggregates. No significant difference could be found between the critical aggregation concentration (cac) value of pure enantiomers and that of the racemic forms. CD spectra did not reveal any aggregation-induced chirality.  相似文献   

13.
The surface and solution behavior of the mixed dialkyl chain cationic and nonionic surfactant mixture of dihexadecyldimethylammonium bromide, DHDAB, and hexaethylene monododecyl ether, C12E6, has been investigated, using primarily the scattering techniques of small-angle neutron scattering and neutron reflectivity. Within the time scale of the measurements, the adsorption of the pure component C12E6 at the air-solution interface shows no time dependence. In contrast, the adsorption of the DHDAB/C12E6 mixture and pure DHDAB has a pronounced time dependence. The characteristic time for adsorption varies with surfactant concentration, composition, and temperature. It is approximately 2-3 h for the DHDAB/C12E6 mixture, dependent upon concentration and composition, and approximately 50 min for DHDAB. At the air-solution interface, the equilibrium composition of the adsorbed layer shows a marked departure from ideal mixing, which is dependent upon both the solution concentration and the concentration of added electrolyte. In contrast, the composition of the aggregates in the bulk solution that are in equilibrium with the surface is close to ideal mixing, as expected for solution concentrations well in excess of the critical micellar concentration. The structure of the mixed adsorbed layer has been measured and compared with the structure of the equivalent pure surfactant monolayer, and no substantial changes in structure or conformation are observed. The extreme departure from ideal mixing in the adsorption behavior of the DHDAB/C12E6 mixture is discussed in the context of the structure of the adsorbed layer, changes in the underlying solution structures, and the failure of regular solution theory to predict such behavior.  相似文献   

14.
In this paper were analyzed the surface properties of surfactants and the miscibility and interactions between components of adsorbed monolayers and micelles formed from mixed systems. The investigated compounds differ in the structure of the polar head and represented cationic (dodecyltrihydroxyethylammonium bromide—DTEAB, dodecyltrimethylammonium bromide DTMAB), anionic (sodium dodecyl sulfate—SDS), and nonionic (dodecyl-β-d-glucoside—DG) surfactant. The experiments were based on the measurements of the surface tension of the aqueous solutions of the investigated compounds and their mixtures (cationic/nonionic—DTEAB/DG, cationic/cationic—DTEAB/DTMAB and cationic/anionic—DTEAB/SDS). The composition of the mixed films and micelles as well as the free energies of mixing values, which are a measure of the molecular interactions, was calculated basing on the equations resulting from the Motomura theory. The obtained results indicate that all the investigated systems mix nonideally both in the monolayers and micelles. The magnitude of the deviations from ideal behavior is strongly dependent on the type of the investigated mixture and increases in the following order: DTEAB/DTMAB < DTEAB/DG  DTEAB/SDS.  相似文献   

15.
The thinning and the critical thickness (of rupture or “black spots” formation) of foam films from aqueous solutions of mixed nonionic surfactants are studied under varied experimental conditions, as a function of film radius (0.05–0.15 mm), surfactant concentration (0.01–1.0 CMC) and ionic strength (0.001–0.1 M NaCl). The experimental values of the drainage coefficient (), determined from the film thickness versus time dependences, were used to calculate the theoretical values of the film critical thickness.

The real velocity of film thinning is a major factor in the process of reaching the state of kinetic instability when approaching the critical thickness (Scheludko's criterion). The classical equation used to describe the film thinning rate, proposed and named by Scheludko (1955) “Reynolds Law”, is applicable for small film radii (r < 0.05 mm). At larger radii the velocity of thinning follows the equation of Manev et al. [E.D. Manev, R. Tsekov, B. Radoev, J. Colloid Interf. Sci. 18 (1997) 769], which takes into account the effect of the film thickness local non-homogeneity.

The studied stabilizing surfactants include n-dodecyl-β-d-maltoside (β-C12G2) and hexaethyleneglycol monododecyl ether (C12E6). Along with confirming the dependences following from the theories of the critical thickness [B. Radoev, A. Scheludko, E.D. Manev, J. Colloid Interf. Sci. 95 (1983) 254] and film thinning [E.D. Manev, R. Tsekov, B. Radoev, J. Colloid Interf. Sci. 18 (1997) 769], the results of the present investigation established also certain deviations for films stabilized with mixed surfactants (β-C12G2 + C12E6). The effectiveness of the empirical equation, employing the drainage coefficient () to describe the film thinning, is emphatically proven here.  相似文献   


16.
The aim of this work was to study intermolecular interactions in systems containing charged polyion (polyacrylate, PA(-)), charged surfactant (C(16)TA(+)) and nonionic surfactant (C(12)E(5) or C(12)E(8)). To achieve this we have created four different phase diagrams using two different so-called complex salts, C(16)TAPA(25) and C(16)TAPA(6000), both consisting of positively charged surfactant (C(16)TA(+)) with polyacrylate (PA(-)) as counterions (no simple salt). The difference between the salts is the length of the polyion (25 or 6000 monomers). Both are insoluble in water. The results revealed that decreasing polyion length and increasing the PEO chain length of the nonionic surfactant were important factors for increasing the solubility of the complex salt. We also found that the curvature effects are quite small at low water content when gradually exchanging C(12)E(8) for either one of the complex salts while there is a gradual change in curvature for the systems containing C(12)E(5). Another interesting observation was the possibility for relatively large amounts of complex salt to be incorporated into a V(1) (Ia3d, bicontinuous) phase in the C(12)E(8)-containing systems. This gives rise to several questions regarding arrangements and dynamics of the polyion in this phase. In the dilute regime several different liquid crystalline phases can coexist with a dilute liquid phase containing the nonionic surfactant.  相似文献   

17.
13C chemical shift assignments have been made for the ethoxy region of nonionic and anionic ethoxylated surfactants. The lanthanide shift reagent Eu(fod)3 was used to assign the shifts of nonionics because of some ambiguities in the literature.  相似文献   

18.
Mixed micellization of binary and ternary mixtures of anionic and nonionic surfactants, such as lithium dodecyl sulfate, polyoxyethylene(23)laurylether, and polyoxyethylene-tert-octylphenylether, is studied in aqueous solution using tensiometric, conductometric, and spectrophotometric methods. Although tensiometry and conductometry complement each other closely, the spectroscopic critical micellar concentration (cmc) is far from agreement with tensiometric study. Several parameters, e.g., cmc, degree of counterion binding, free energies of micellization, and interfacial adsorption, have been evaluated. Established theories of Clint, Rosen, Rubingh, Motomura, Georgiev, Maeda, and Blankschtein were applied to evaluate the mole fraction of different components in the self-aggregated phase, the interaction parameter, free energy contributions, and expected cmc.  相似文献   

19.
The interaction between low molecular-mass homopeptides and mixtures of nonionic and anionic surfactants has been assessed by using reversed-phase thin-layer chromatography. The relative strength of interaction for mixtures of sodium dodecylsulfate and tridecylalcohol diglycolate (GNX) at the molar ratios of 8:2, 6:4, 4:6 and 2:8 has been calculated and its relationship with the physicochemical parameters (number of amino acid units, hydrophobicity, side chain bulkiness, electronic characteristics) of peptides has been computed by stepwise regression analysis. Each peptide interacted with each surfactant mixture the strength of interaction markedly depending on both the character of the peptide and the composition of the surfactant mixture. The hydrophobicity and electronic properties of the amino acid units exerted the highest influence on the strength of interaction at the highest concentration of the nonionic surfactant (GNX) whereas the number of amino acid units in the peptide molecule and the bulkiness of the amino acid side chain governed the strength of interaction at the lowest concentration of GNX.  相似文献   

20.
This study examined the direct spectrometric method for determining non-ionic surfactants in highly-polluted samples (i.e., soil leachates) containing high concentrations of humic acids. Meso-tetra-(3,5-dibromo-4-hydrooxyphenyl)-porphyrin served as a coloration agent. The method was tested by use of two polyethoxylate/polypropoxylate — based non-ionic surfactants: Triton CF-21 containing aromatic groups in the structure and Novanik 1047A containing only linear hydrocarbon chains. The main goal was to quantify the influence of interfering species to the results. A test for coincidence of regression lines was employed for objective evaluation of the humic acid influence on the determination. It was observed that for linear surfactant Novanik 1047 A the method provides reliable result and thus, can serve for routine analyses. Regarding Triton CF-21, an interfering effect of humic acids was observed; however, after sufficient dilution of the samples, the method can be used as well. Finally, the method can be used for simple analyses of problematic samples without complicated sample-pretreatment.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号