首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Indium and its compounds exhibit excellent semiconductor properties however they are suspected carcinogenic to human beings. For the first time, we applied nanofiltration (NF) technology to the separation of indium from a synthetic wastewater as a literature review revealed little information on the treatment of such a waste. In this research, three types of nanofiltration membranes, NTR7450, ES10 and ES10C, were employed to compare their performances under various operating conditions. With increasing indium concentration in the feed solution, the rejection rates decreased in all the membranes, which could be ascribed to concentration polarization and ion-shielding effects. The changes of indium concentration in the permeate (Cp) were then correlated to the concentration factor (CF) during nanofiltration of the feed solution. The experimental results were well predicted by the theoretical analysis. Increase of operating pressure enhanced their rejection rates of indium, which might be attributed to the “dilute effect”. The real rejection (fr) of indium by nanofiltration was found permeate flux dependent. Based on the results obtained, the nanofiltration mechanisms of multivalent cations such as In3+ were delineated and discussed. It was found that most of the models developed from nanofiltration of univalent and divalent cations were still valid for the nanofiltration process of trivalent cations. However, the strong chemical potential of trivalent cations to form complexes in the solution around neutral pH exerted a significant impact on indium rejection rates of the NF membranes. The experimental results suggest a stable performance of nanofiltration when applied to the semiconductor wastewater, however, acidic conditions should be avoided.  相似文献   

2.
Retention properties of a nanofiltration ceramic membrane were investigated with single polyethyleneglycol (PEG) solutions and mixed PEG/inorganic electrolyte solutions. The rejection coefficient of PEGs was found to decrease in the presence of ions. It was shown that the effect of ions on the retention of neutral solutes increases with the electrolyte concentration. This phenomenon was ascribed to the partial dehydration of PEG molecules induced by the surrounding ions. This argument was confirmed by using various electrolytes (KCl, LiCl and MgCl2). It was found that the lowering of the PEG rejection coefficients follows the Hofmeister series, i.e. Mg2+ > Li+ > K+. Experimental data were used to compute the resulting decrease in the Stokes radius of PEG molecules in the presence of the various electrolytes.  相似文献   

3.
The potential use of nanofiltration polyamide membrane for removing cobalt and lead ions from wastewater was investigated. Rejection experiments were conducted with Pb(NO3)2 and Co(NO3)2 in both single-salt solutions and mixtures. Experimental rejection rates were corrected for concentration polarization phenomenon by means of film theory. The structural features of the membrane (pore radius and thickness-to-porosity ratio) were first estimated from the fitting of glucose rejection rates. Its surface charge properties were then investigated in single-salt solutions at pH values between 3 and 7. Rejection of both heavy metal ions was found to be influenced by operating conditions such as permeate flux, solution pH and feed salt concentration. In single-salt solutions, rejection of lead was higher than that of cobalt at pH ≥ 5. This behavior may be explained by (i) higher normalized volume charge density in the Pb(NO3)2 than in the Co(NO3)2 solution and (ii) lower ionic strength of the Pb(NO3)2 solution as compared with the Co(NO3)2 solution. At pH < 5, the dielectric exclusion would be more important for Co(NO3)2 than for Pb(NO3). Lead rejection was almost the same in both single-salt solutions and ternary mixtures, whereas cobalt rejection was strongly affected by the presence of lead. Cobalt was found to be rejected much more than lead in mixtures at equal mass concentrations, the difference between rejections of the two cations being greater as pH increased.  相似文献   

4.
The effects of surface water pretreatment on membrane fouling and the influence of these different fouling types on the rejection of 21 neutral, positively and negatively charged pharmaceuticals were investigated for two nanofiltration membranes. Untreated surface water was compared with surface water, pretreated with a fluidized anionic ion exchange and surface water, pretreated with ultrafiltration. Fouling the nanofiltration membranes with anionic ion exchange resin effluent, resulted in the deposition of a mainly colloidal fouling layer, with a rough morphology. Fouling the nanofiltration membranes with ultrafiltration permeate, resulted in the deposition of a smooth fouling layer, containing mainly natural organic matter. The fouling layer on the nanofiltration membranes, caused by the filtration of untreated surface water, was a combination of both colloids and natural organic matter.Rejection of pharmaceuticals varied the most for the membranes, fouled with the anionic ion exchange effluent, and variations in rejection were caused by a combination of cake-enhanced concentration polarisation and electrostatic (charge) effects. For the membranes, fouled with the other two water types, variations in rejection were smaller and were caused by a combination of steric and electrostatic effects.Changes in membrane surface hydrophobicity due to fouling, changed the extent of partitioning and thus the rejection of hydrophobic, as well as hydrophilic pharmaceuticals.  相似文献   

5.
The influence of inorganic scalants and NOM on nanofiltration (NF) membrane fouling was investigated by a crossflow bench-scale test cell. Mathematical fouling models were used to determine kinetics and fouling mechanisms of NF membrane. It was observed that, with natural organic matter (NOM) at a concentration of 10 mg L−1, divalent cation, i.e. calcium (Ca2+), exhibited greater flux decline than monovalent cation, i.e. sodium (Na+), while solution flux curves dominated cake formation model, especially at high ionic strength. For inorganic scalants of polyanions, i.e. carbonate (CO32−), sulphate (SO42−), and phosphate (PO43−), solution flux curves were relatively fitted well with pore blocking model, possibly due to precipitated species formed and blocked on membrane surface and/or pores. For different divalent cations (i.e. calcium and magnesium (Mg2+)), calcium showed greater flux decline than magnesium, possibly due to higher concentration of precipitated calcium species than that of precipitated magnesium species based on the pC (−log concentration) and pH diagram.  相似文献   

6.
The current work focuses on the application of nanofiltration (NF) to the isolation of a pharmaceutical product, clavulanate (CA), from clarified fermentation broths, which show a complex composition with five main identified ions (K+, Cl, NH4+, SO42− and CA). Our aim is to predict the rejection rates of these five ions, with the NF membrane Desal-DK, which may influence the separation of CA and play a role in the whole downstream process.  相似文献   

7.
The effect of gel layer thickness on salt separation of positively charged pore-filled nanofiltration membranes has been examined both theoretically and experimentally. The extended Nernst-Planck (ENP) equation coupled with the Teorell-Meyer-Sievers (TMS) model were used to calculate the pressure-driven sodium chloride rejections for membranes having gel densities in the range typically used in nanofiltration applications. It was found that salt rejection was dependent on membrane (gel-layer) thickness with salt rejections increasing rapidly with thickness up to 50–75 μm. Further increases in thickness beyond this point had a much smaller effect on salt rejection. The theoretical predictions were examined experimentally by preparing a series of membranes with cross-linked poly(3-acrylamidopropyl)-trimethylammonium chloride (PAPTAC) gels with varying densities within the pores of a thin microporous polyethylene (PE) support. The membranes were characterized by their polymer volume fractions (gel concentration), thicknesses and effective charge densities. The effect of membrane thickness was examined by using single and stacks of two membranes. The pure water fluxes and salt rejections of the membranes and membrane stacks were determined in the pressure range 50–550 kPa. The single salt rejections of the membranes which were very dependent on the thickness of the membrane or membrane stack, were fully in accord with the calculated salt rejections of the membranes.  相似文献   

8.
Separation of acidic dyestuffs, including Acid red 4, Acid orange 10, and Acid red 27, from aqueous solution by nanofiltration (NF) was shown to be a feasible process to accomplish an effective removal over a broad operational range. For most experiments conducted in this study, dyestuff rejections of greater than 98% were achieved. The permeate flux for experiments conducted with various dyestuffs was increased with increasing operating pressure and solution temperature. The permeability was increased and the rejection of dyestuffs was slightly decreased with increasing cross-flow velocity of solution. The effect of solution pH on the rejection of dyestuff was elucidated by the electrostatic characteristics between the species of dyestuff and the membrane surface. Maximum permeability was obtained for experiments operated in aqueous solution of pH 5, which was close to the isoelectric point of the membrane.  相似文献   

9.
Under conditions when amino acids were effectively neutral and the membrane was near its point of zero charge, crossflow nanofiltration experiments revealed an extended duration before steady-state permeate concentrations were attained for tryptophan and phenylalanine compared with glycine and alanine. Valine showed an intermediate behavior compared with Trp and Phe on one hand and Gly and Ala on the other. Additionally, steady-state rejections of Trp and Phe were lower than that expected from predominantly steric and electrostatic considerations (Gly, Ala, and Val), consistent with enhanced diffusion across the active layer of the membrane due to partitioning onto the polymeric matrix (polymer phase diffusion plus pore diffusion). Batch tests substantiated the unsteady-state removals during crossflow nanofiltration by revealing significant uptake of Phe and Trp, limited uptake of Val, and no measurable uptake of Gly and Ala on the polymeric membrane. Hence, sorption can lead to the overestimation of Trp and Phe, (and possibly Val) rejection capabilities of nanofiltration membranes in the short-term. In other words, even sorption of solutes with low octanol–water partition coefficients (log Kow < 0) such as Trp and Phe requires more careful long-term measurements since it substantially increases the time to achieve steady-state conditions.  相似文献   

10.
朱宝库 《高分子科学》2014,32(3):377-384
A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine(MPDA) and trimesoyl chloride(TMC) using PVC hollow fiber membrane as supporting.A series of PVC nanofiltration membranes with different molecular weight cutoff(MWCO) can be obtained by controlling preparation conditions.Chemical and morphological characterization of the membrane surface was carried out by FTIR-ATR and SEM.MWCO was characterized by filtration experiments.The preparation conditions were investigated in detail.At the optimized conditions(40 min air-dried time,aqueous phase containing 0.5% MPDA,0.05% SDS and 0.6% acid absorbent,oil phase containing 0.3% TMC,and 1 min reaction time),under 0.3 MPa,water flux of the gained nanofiltration membrane reaches 17.8 L/m2·h,and the rejection rates of methyl orange and MgSO4 are more than 90% and 60%,respectively.  相似文献   

11.
Two commercial nanofiltration (NF) membranes, viz., Desal-HL and NF 700 MWCO were investigated experimentally using neutral and charged solutes, viz., glucose, sodium chloride and magnesium chloride. Effect of pH was studied for sodium chloride rejection and isoelectric point of the membrane was deduced. Experimental results were analyzed using Donnan steric pore and dielectric exclusion models. Dielectric exclusion arises due to the difference in dielectric constant between the bulk and the nano-pore. Born dielectric effect was used as dielectric exclusion phenomena in the present investigation. Stokes–Einstein, Born effective and Pauling radii were used for theoretical simulation, which accurately predicted different charge densities. Empirical correlations were proposed between charge density, concentration and pH for each radius. Charge density decreased drastically when dielectric exclusion term was included in the theoretical model, which showed the real physical characteristics of the membranes employed. Charge density and radius of pore was found to be an important surface parameter in predicting the separation effects in NF membranes.  相似文献   

12.
The role of colloid deposition on the performance of a salt-rejecting NF membrane was evaluated by modeling salt transport using a two-layer transport model, which quantified the relative contributions of advection and diffusion in the cake and the membrane layers, and the effects of flux on the membrane sieving coefficient. The model was able to accurately describe how the measured permeate concentration, rejection, osmotic pressure, and flux decline varied with time. The two-layer model confirmed that the Peclet number in the cake layer was about an order of magnitude higher than that in the membrane layer, leading to significant concentration polarization at the membrane surface, as shown by others. However, the cake layer also increased overall resistance, which resulted in flux decline during constant pressure operation. Flux decline caused an increase in the actual sieving coefficient, leading to higher solute flux, lower observed rejection, and thus lower the bulk concentration. These coupled phenomena tended to mitigate the increase in concentration polarization caused by the cake. Therefore, as predicted by the model and verified by experiment, the osmotic pressure does not increase monotonically as the cake grows, and in fact can decrease when the cake layer is thick and the flux decline is significant. In our experimental system, the pressure drop across the cake layer, which was proportional to the cake thickness, was significant under the conditions studied. The effects of cake-enhanced osmotic pressure analyzed here are lower than those observed in previous studies, possibly because the transport model employed explicitly accounts for the effect of flux decline due to cake growth on the membrane sieving coefficient, and possibly because we used a somewhat different methodology to estimate cake porosity.  相似文献   

13.
Because of the growing interest in nanofiltration for industrial use, a better insight in the retention mechanisms in nanofiltration is needed, which will make it possible to understand membrane performances for specific applications. In this paper, the retention of a series of organic molecules by four nanofiltration membranes was studied. The membranes that were used are NF70 (Dow/FilmTec), NTR 7450 (Nitto-Denko), UTC-20 (Toray Ind.) and Zirfon® (VITO). In order to correlate the retention with the size of the molecule, which is the main factor that determines the retention, use was made of different parameters for the molecular size: molecular weight, the Stokes diameter, the equivalent molar diameter, and a diameter obtained with energy minimisation calculations. For each size parameter, the correlation with retention in nanofiltration experiments was calculated. For the Zirfon® membrane, retentions were too low to obtain a good correlation. For the three other membranes, a good correlation with retention was found for each of the size parameters. Two other factors were found to have an influence on retention of organic molecules: the polarity of the molecule, and the charge of the molecule. The importance of these factors depends on the molecules as well as on the type of membrane.  相似文献   

14.
Iron haematinics are high-volume, low-cost drug products used to treat anaemia. For the preparation of iron haematinics, the manufacturers depend heavily on multipurpose-batch or semi-batch reactors. Here, process intensification of haematinics was carried out using membrane nanofiltration as a major operation. A total of three haematinics namely, iron (III) hydroxide polymaltose, iron gluconate, and iron sucrose complex were prepared, and the process intensified on dead-end filtration set up by using a polymeric membrane. Iron (III) hydroxide polymaltose experimental results were compared with commercially available standard. The membrane performance was characterized by various parameters such as flux, permeability, flux decline ratio, flux recovery ratio, percentage retention, fouling, etc., at different transmembrane pressures. The membrane surface was analysed by Scanning Electron Microscopy (SEM) to understand its morphology and fouling. The iron concentration was detected in the permeate stream using inductively coupled plasma optical emission (ICP-OES) spectroscopy to detect %retention (>99.99%) under all experimental conditions tested. The study led to optimized conditions for haematinics concentration by a membrane at a 10-bar trans-membrane pressure, which was applied for the preparation of iron gluconate salt. Overall, the study resulted in a green process with increased productivity.  相似文献   

15.
Fouling of reverse osmosis (RO) and nanofiltration (NF) membranes by humic acid, a recalcitrant natural organic matter (NOM), was systematically investigated. The membrane flux performance depended on both hydrodynamic conditions (flux and cross-flow velocity) and solution composition (humic acid concentration, pH, ionic strength, and calcium concentration), and was largely independent of virgin membrane properties. While increasing humic acid concentration and ionic strength, and lowering cross-flow velocity affected flux performance moderately, severe flux reduction occurred at high initial flux, low pH, and high calcium concentration. At a calcium concentration of 1 mM, all the membranes exhibited an identical stable flux, independent of their respective intrinsic membrane permeabilities. The effect of solution composition was more significant at higher fluxes. Improved salt rejection was observed as a result of humic acid fouling, which was likely due to Donnan exclusion by humic material close to membrane surfaces. Greater rejection improvement was observed for membranes with rougher surfaces.  相似文献   

16.
The removal of natural organic matter (NOM) is a critical aspect of potable water treatment because NOM compounds are precursors of harmful disinfection by-products, hence should be removed from water intended for human consumption. Ultrafiltration using ceramic membranes can be a suitable process for removal of natural substances. Previously reported experiments were dedicated to evaluating the suitability of ultrafiltration through ceramic membrane for water treatment with a focus on the separation of natural organic matter. The effects of the membrane operating time and linear flow velocity on transport and separation properties were also examined. The experiments, using a 7-channel 300 kDa MWCO ceramic membrane, were carried out with model solutions and surface water at trans-membrane pressure of 0.2–0.5 MPa. The results revealed that a loose UF ceramic membrane can successfully eliminate natural organic matter from water. The permeability of the membrane was strongly affected by the composition of the feed stream, i.e. the permeate flux decreased with an increase in the NOM concentration. The permeate flux also decreased over the period of the operation, while this parameter did not influence the effectiveness of separation, i.e. the removal of NOM. It was observed that the increased cross-flow velocity resulted in the decrease in the membrane-fouling intensity and slightly improved the retention of contaminants.  相似文献   

17.
Novel nanofiltration (NF) membrane was developed from hydroxyl-ended hyperbranched polyester (HPE) and trimesoyl chloride (TMC) by in situ interfacial polymerization process using ultrafiltration polysulfone membrane as porous support. Fourier transform infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) measurements were employed to characterize the resulting membranes. The results indicated that the crosslinked hyperbranched polyester produced a uniform, ultra-thin active layer atop polysulfone (PSf) membrane support. FTIR-ATR spectra indicated that TMC reacted sufficiently with HPE. Water permeability and salts rejection of the prepared NF membrane were measured under low trans-membrane pressures. The resulting NF membranes exhibited significantly enhanced water permeability while maintaining high rejection of salts. The salts rejection increase was accompanied with the flux decrease when TMC dosage was increased. The flux and rejection of NF 1 for Na2SO4 (1 g/L) reached to 79.1 l/m2 h and 85.4% under 0.3 MPa. The results encourage further exploration of NF membrane preparation using hyperbranched polymers (HBPs) as the selective ultra-thin layer.  相似文献   

18.
This paper reports the effect of membrane pretreatment using different organic solvents on the performance of polyamide, polyimide and polydimethylsiloxane (PDMS) membranes in methanol solutions. Membrane pretreatment using acetone, methanol and toluene results in significant changes of membrane flux and rejection for polyamide- and polyimide-based membranes (Desal-DK and STARMEM 228) due to membrane swelling. The Performance of a polydimethylsiloxane (PDMS)-based membrane (MPF-50) in methanol solutions was not significantly affected by membrane pretreatment.  相似文献   

19.
Throughout this study, the effect of certain organic acids, methacrylic acid, lactic acid and tartaric acid, doped in polysulfone (PSF) casting solution onto the performance of nanofiltration (NF) membranes was investigated. Different NF membranes have been prepared from m-phenylenediamine and trimesoylchloride onto the top surface of the acid-modified PSF membranes through regulating the concentration and contact time of the conventional interfacial polymerization process. The study of scanning electron microscopy (SEM) was used to investigate the influence of acids on the morphology of membranes and cross-sectional structures. The functional groups, hydroxyl and carboxylic acid, of the acids have resulted in a significant increase in membrane thickness, porosity and hydrophilicity, with a decrease in macrovoid capacity of the PSF layer. The acid-modified PSF/TFC membranes showed higher rejection of salt, with an increment in water flux compared to the neat membrane. Water flux and salt rejection (Rs %) of the control membrane was 7.6 L/m2 h and 65.4%, whereas polysulfone/methacrylic acid (PSF/MAAc), polysulfone/tartaric acid (PSF/TAc), and polysulfone/lactic acid (PSF/LAc) were 16.8, 18.5, and 20.2 L/m2 h and 88, 88.2 and 94.1%, respectively. Efficiency of prepared NF membranes under various inlet pressures and specific salts was investigated with selectivity and salt rejection. The salt rejection of a mixed salt solution was found to meet the order of Rs % CaSO4 ≥ Rs % Na2SO4 ˃ Rs % MgSO4 ˃ Rs MgCl2 ˃ Rs % NaCl.  相似文献   

20.
Transport of four metallic salts (CuCl2, ZnCl2, NiCl2 and CaCl2) through a polyamide nanofiltration (NF) membrane has been investigated experimentally from rejection rate and tangential streaming potential measurements. Rejection rates have been further analyzed by means of the steric, electric and dielectric exclusion (SEDE) homogeneous model with the effective dielectric constant of the solution inside pores as the single adjustable parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号