首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2-Dimethylamino-6-lauroylnaphthalene (Laurdan) is a membrane probe of recent characterization, which shows high sensitivity to the polarity of its environment. Steady-state Laurdan excitation and emission spectra have different maxima and shape in the two phospholipid phases, due to differences in the polarity and in the amount of dipolar relaxation. In bilayers composed of a mixture of gel and liquid-crystalline phases, the properties of Laurdan excitation and emission spectra are intermediate between those obtained in the pure phases. These spectral properties are analyzed using the generalized polarization (GP). TheGP value can be used for the quantitation of each phase. The wavelength dependence of theGP value is used to ascertain the coexistence of different phase domains in the bilayer. Moreover, by following the evolution of Laurdan emission vs. time after excitation, the kinetics of phase fluctuation in phospholipid vesicles composed of coexisting gel and liquid-crystalline phases was determined.GP measurements performed in several cell lines did not give indications of coexistence of phase domains in their membranes. In natural membranes, Laurdan parameters indicate a homogeneously fluid environment, with restricted molecular motion in comparison with the phospholipid liquid-crystalline phase. The influence of cholesterol on the phase properties of the two phospholipid phases is proposed to be the cause of the phase behavior observed in natural membranes. In bilayers composed of different phospholipids and various cholesterol concentrations, Laurdan response is very similar to that arising from cell membranes. In the absence of cholesterol, from the steady-state and time-resolved measurements of Laurdan in phospholipid vesicles, the condition for the occurrence of separate coexisting domains in the bilayer has been determined: the molecular ratio between the two phases must be in the range between 30% and 70%. Below and above this range, a single homogeneous phase is observed, with the properties of the more concentrated phase, slightly modified by the presence of the other. Moreover, in this concentration range, the calculated dimension of the domains is very small, between 20 and 50 Å.  相似文献   

2.
The rotational reorientation dynamics of rhodamine 700 (LD700) in the first (S1) and the fifth (S5) excited state in three aprotic polar solvents have been investigated using femtosecond time-resolved stimulated emission pumping fluorescence depletion (FS TR SEP TD) spectroscopy. In both excited states, the overall rotational relaxation of LD700 occurs on a time scale of 40-230 ps depending on the solvent, and a quantitative analysis of this time constant has been performed using the Stokes-Einstein-Debye (SED) hydrodynamic theory combined with the extended charge distribution model developed by Alavi and Waldeck. The experimentally measured reorientation times for LD700 in S5 are smaller than those in S1, which is in accord with the predictions by the SED theory. In addition, for LD700 in S5, a rapid initial decrease on the time scale less than 0.5 ps has been found. According to our analysis, this fast component may account for the rapid internal conversion from S5 to S1, and the rate of internal conversion was found to be sensitive to the solvent polarity.  相似文献   

3.
Quinoxalin-2(1H)-one and its derived 3-Benzylquinoxalin-2(1H)-one were synthesized and characterized by UV–visible spectroscopy. The changes displayed by the photophysical properties of these molecules in different solvents can be explained in terms of a sum of dielectric polarity and hydrogen bonding effects taking part in the stabilisation of the structure. 3-Benzylquinoxalin-2(1H)-one exhibits two fluorescence emission bands (F a and F n) in very polar solvents and one band (F n) in low polar solvents. These bands are assigned on the basis of the absorption and emission solvent effect. The abnormal fluorescence (F a) observed in very polar solvents is attributed to an intermolecular interaction between solute and solvent molecules in the excited state (exciplex formation).  相似文献   

4.
The photophysical properties of three newly synthesized pyrazoloquinolines, composed of N,N-dimethylaniline as donor subunit and various substituted forms of the acceptor pyrazoloquinoline (DPPQ), were investigated by absorption as well as by stationary and time resolved fluorescence spectroscopy. These compounds show generally highly efficient emission in nonpolar and medium polar solvents; the dipole moment of the emitting state increases and the quantum yield decreases with solvent polarity. These results are explained by state reversion in polar solvents: At low polarities emission originates from a state localized on the DPPQ moiety, whereas in the high-polarity regime the next excited state of charge transfer character, in which an electron is promoted from the amino nitrogen lone pair into an excited orbital of the DPPQ moiety, becomes the fluorescent state. This view is corroborated by semiempirical calculations including the solvent reaction field, low-temperature fluorescence measurements, and the observation of effects of protonation on the spectroscopic and photophysical properties.  相似文献   

5.
The relaxation contribution of the molecular reorientation in an elastic field of an acoustic wave to the effective shear moduli is calculated in the framework of the phenomenological two-level model of orientational states in the low-temperature phase of solid C60. The polarity of the rotation axis of C60 molecules and the possible existence of orientational domains in the structure of the low-temperature phase are taken into consideration. The estimates obtained are compared with the available experimental data.  相似文献   

6.
Anomalous (reverse) substituent-induced 13C nuclear magnetic resonance chemical shifts at the carboxyl carbon (δco) in meta-substituted benzoic acids have been studied for 11 substituents having varying electronic effects in 4 aprotic (nonhydroxylic) solvents of varying polarity by employing different dual substituent parameter models. The regression results for apolar aprotic solvents provide a strong evidence for through space π-polarization mode of transmission of reverse meta-substituent effects on the carboxyl carbon in benzoic acids. The results for dipolar aprotic solvents indicate significant specific solvation of π-polarized forms of the acids. The study showed further that an apolar aprotic solvent has a distinct preference over a dipolar aprotic one for investigating intrinsic substituent effects on chemical shifts in aromatic molecules.  相似文献   

7.
The fluorescence characteristics of the Schiff bases 2-(3-pyridylmethyliminornethyl)phenol (1), 2-(2 pyridyliminomethyl)phenol (2), N.N-bis(salicylidene)-2,3-pyridinediamine (3), N,N'-bis(salicylidene)-2,6-pyridinediamine (4) and 2-(2-amino-4-methoxymethyl-6-methyl-3-pyridylmethyliminomethyl)phenol (5) were studied in various solvents at different pH values. Corresponding quantum efficiencies were determined. Compound 1, which showed a tendency towards tautomeric mterconversion to ketoamine in polar protic solvents, was not fluorescent at pH < 8. The fluorescence of other compounds was very sensitive to solvent polarity and the pH of the medium. Compounds 2-4, preferably present as enolimines in all solvents, were not fluorescent in non-polar and moderately polar solvents, whereas weak emission was observed in polar solvents, like methanol, dimethylformamide and dioxane/water 1/1 (0.001 < Q < 0.072). A significant increase in Stokes shifts and in quantum efficiencies was noted as a result of increasing polarity of dioxane/water mixtures, indicating specific interactions with polar water molecules. The emission was promoted at acidic pH values where a pyridinium cation was formed (0.061 < Q < 0.519, in dioxane/water 1/1 at pH 3.4). Compound 5, which was a tautomeric mixture of enoiimine and cyclic diamine in all solvents, was fluorescent in polar as well as in non-polar media. The quantum efficiency varied dependent on the solvent and pH (0.023 <Q< 0.435). The cyclic diamine, i. e. the more rigid structure was supposed to be responsible for the fluorescence in non-polar and aprotic solvents as well as at neutral, and weakly basic pH values.  相似文献   

8.
Novel aminophthalimide derivatives were synthesized starting from (3aR,7aS)-2-(2-hydroxypropyl)-3a,4,7,7a–tetrahydro-1H-isoindole-1,3(2H)-dione (9) , and solvent effects on the photo-physical properties of these newly synthesized aminophthalimide derivatives (compounds 14 and 15) were investigated using UV-Vis absorption spectroscopy, steady-state and time-resolved fluorescence measurements. Both absorption and fluorescence spectra exhibited bathochromic shift with the increased polarity of the solvents for both molecules. Solute-solvent interactions were analyzed using the Lippert-Mataga and Bakhshiev polarity functions, and Kamlet-Taft and Catalan multiple linear regression approaches. The results revealed that these two molecules experienced specific interactions. Furthermore, photo-physical parameters were calculated for both molecules in all of the solvents, such as the fluorescence quantum yield, fluorescence lifetime, radiative (kr) and non-radiative (knr) rate constant values. It was observed that the fluorescence quantum yield values decreased linearly with increasing solvent polarity. This study proved the new dyes including isopropyl methanesulfonate group displayed different behavior from previous studies of aminophthalimide derivatives in water. It was recommended that these new dyes having interesting properties by changing solvent can be used various applications such as environmentally sensitive fluorescent probes, labels in biology, laser industry.  相似文献   

9.
The excited-state intramolecular proton transfer (ESIPT) mechanism in six amino 2-(2′-hydroxyphenyl)benzazole derivatives were investigated in different solvents by means of UV-vis absorption and steady-state fluorescence. The amino benzazoles are fluorescent in the blue-orange region under UV radiation. Changes in the absorption, emission and excitation spectra were analyzed and correlated to the position of the amino group and the solvent polarity. The equilibrium between the conformers in solution in the ground state, confirmed by the solvatochromic effect, reflects the dual fluorescence emission presented by these dyes.  相似文献   

10.
通过考察2-羟基-1-萘甲醛半碳酰腙(HNLSC)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了HNLSC分子在不同溶剂及酸、碱条件下的不同构型,证实了HNLSC具有典型的ESIPT特性。在非极性溶剂中分子主要以分子内氢键的闭式构型存在,这种闭式构型使分子具有ESIPT特性,在环己烷溶剂和高酸度极性溶剂中分子均表现出~415nm的正常荧光和~435nm处的反常ESIPT荧光。在极性质子溶剂中,因溶质和溶剂之间形成了分子间的氢键以及进一步去质子化,HNLSC形成了基态的溶剂化开式构型和离子构型,在吸收光谱中表现出~395nm的离子构型特征吸收。开式构型和离子构型阻断了分子内质子转移途径,因而在荧光光谱中仅表现出一个特征峰。实验进一步通过三乙胺和稀硫酸调节溶液体系的极性和酸度环境,证明在不同溶剂极性和酸度环境下,HNLSC分子不仅存在萘环上羟基变化引起的多种互变异构体间的转化平衡,同时存在—CHN—NH—CO—NH2结构域的烯醇式和酮式结构的相互转化。  相似文献   

11.
The nonradiative relaxation of the triplet states of oxy-and amino-derivatives of naphthalene and conjugated ions is studied by luminescent and kinetic methods (measurements of the phosphorescence decay and of phosphorescence excitation and phosphorescence spectra) in solid solutions of ethanol-h 6, ethanol-d 6, and mixtures of toluene-h 8 with piperidine-h 11 at 77 K. It is found that, along with intramolecular factors, a microsolvate surrounding a molecule or an ion substantially affects the nonradiative relaxation. The contribution of this factor in ethanol increases in the series cation-polar molecule-anion and in mixtures of toluene with piperidine—with increasing piperidine concentration. The results are interpreted assuming the inductive-resonance dipole-dipole transfer of the triplet energy to the dipole acceptors of intramolecular bonds and bonds with molecules of the environment. The relative arrangement of hydrogen atoms of OH groups of ethanol molecules in microsolvates of cations and anions estimated using the inductive-resonance model agrees with the difference in the structure of solvates of oppositely charged ions, which is caused by the electrostatic charge-dipole interaction and the distribution of the electron density in the ground state of the corresponding emitting center. The inductive-resonance model was used for studying the features of solvation processes involving polar molecules. It is shown that the difference between the structures of microsolvates of 2-oxy-naphthalene molecules in solvents with close dipole moments (ethanol and piperidine) is mainly caused by the different ability of these solvent molecules to form associates. The structure of microsolvates of oxy-derivatives of naphthalene in the associated amphoteric solvent is found to depend on the number and position of substituents. In oxy-derivatives of naphthalene with spatially separated OH groups in ethano-d 6, deuteroexchange occurs in both substituents, whereas in the naphthalene derivative with adjacent OH groups this occurs only in one of the groups. Comparison of the phosphorescence spectra of hydrogen-bond complexes and proton-transfer complexes in nonpolar solvents at 77 K revealed the existence of molecular naphthol entities in the triplet state that were formed from ionized entities in the singlet state.  相似文献   

12.
The fluorescence of styrylthiazoloquinoxaline (STQ) in the solvent mixture methanol and dichloromethane (DCM) and 2-octanol have many common characteristics: biexponential fluorescence decay, wavelength-dependent amplitudes, a negative amplitude for the short-lifetime component at long emission wavelengths, and a time-dependent red shift of the emission spectrum. In octanol, the fluorescence lifetime decreases with increasing temperature, whereas the lifetime increases with temperature in the methanol/DCM mixture. The fluorescence characteristics in 2-octanol ( = 7.29 cP) are readily explained by the conventional model of excited-state relaxation kinetics by solvent reorientation. This model is not applicable for low-viscosity ( = 0.455 cP) solvent mixtures. A model of excited-state relaxation kinetics involving solvent exchange (versus solvent reorientation in pure solvents) in the excited state is proposed for the solvent mixture. The model assumes that the solvent compositions around the solute are different in the ground and excited states and the solvent composition is temperature dependent.  相似文献   

13.
Prodan and Laurdan are fluorescent probes largely used in biological systems. They were synthetized to be sensitive to the environment polarity, and their fluorescent emission spectrum shifts around 120 nm, from cyclohexane to water. Although accepted that their emission spectrum is composed by two emission bands, the origin of these two bands is still a matter of discussion. Here we analyze the fluorescent spectra of Prodan and Laurdan in solvents of different polarities, both by decomposing the spectrum into two Gaussian bands and by computing the Decay Associated Spectra (DAS), the latter with time resolved fluorescence. Our data show that the intensity of the lower energy emission band of Prodan and Laurdan (attributed, in the literature, to the decay of a solvent relaxed state) is higher in cyclohexane than in water, showing a decrease as the polarity of the medium increases. Moreover, in all solvents studied here, the balance between the two emission bands is not dependent on the temperature, strongly suggesting two independent excited states. Both bands were found to display a red shift as the medium polarity increases. We propose here a new interpretation for the two emission bands of Prodan and Laurdan in homogeneous solvents: they would be related to the emission of two independent states, and not to a pair of non-relaxed and solvent relaxed states.  相似文献   

14.
对三苯胺进行溴代和C-N偶联反应合成4-萘基三苯胺(a),对脱氢枞酸进行酯化、溴代、硝化、还原和C-N偶联反应合成13-[N,N-(4-萘基苯基)-苯基]胺基-脱异丙基脱氢枞酸甲酯(b)及13-[N,N-双(4-萘基苯基)]胺基-脱异丙基脱氢枞酸甲酯(c)两个化合物,通过1H MNR,13C MNR及MS对化合物的结构进行表征。为了研究化合物结构与光谱性能之间的关系,首先利用Gaussian 09程序采用密度泛函DFT/B3LYP方法,对三个化合物的空间构型进行全优化,得到它们的键长、键角和二面角,对比发现脱氢枞酸骨架和萘环的引入会影响化合物的共平面性,而萘环的引入会增大化合物的共轭程度。光谱性能方面,研究了三种化合物在甲醇、二氧六环、四氢呋喃、二氯甲烷和环己烷这5种极性逐渐减小的溶剂中的荧光发射光谱和紫外吸收光谱。结果表明,在荧光光谱中,化合物a,b和c在不同极性溶剂中最大荧光发射波长均有不同程度位移,在甲醇中最大,在环己烷中最小,但是位移并非随着极性的增大而只发生红移,在二氯甲烷、四氢呋喃和二氧六环3种极性依次增大的溶剂中,a,b,c的荧光发射波长均随着溶剂极性的增大而发生较大程度的蓝移;在同一溶剂中,化合物b和c相对于a的荧光发射波长依次发生红移,c的红移程度与b差距不大。紫外吸收光谱中,三个化合物在不同极性溶剂中的最大吸收波长也有差异,在200~250 nm区间,三个化合物均在二氯甲烷中有较大位移,在300~350 nm区间,在甲醇中位移较大,而在250~300 nm区间,最大吸收波长差别不大;在同一溶剂中,它们在300~350 nm区间的最大吸收波长差别较大,化合物c较a红移26 nm。结合结构优化所得数据可以证明,化合物的共轭程度对荧光发射光谱和紫外吸收光谱均有影响,而共平面性对荧光发射光谱影响较大。化合物a,b和c在不同极性溶剂中荧光发射光谱和紫外吸收光谱的较大变化,表明它们有明显的溶致变色行为,具有作为分子探针探测外部环境极性大小的潜能。  相似文献   

15.
Steady-state fluorescence oxygen quenching experiments were performed on phospholipid vesicles where 2-dimethylamino-6-lauroylnaphthalene (Laurdan) was inserted. The quenching efficiency was found to be much higher in vesicles in the liquid-crystalline phase with respect to the gel phase, by a factor of about 50. Since the oxygen solubility in the two phospholipid phases can differ at most by a factor of 4 based on literature values, we concluded that oxygen diffusion must be responsible for the great difference in the quenching efficiency. A relatively high quenching efficiency was also found in vesicles composed of equimolar gel and liquid-crystalline phospholipids. Simulations were performed using the linear superposition of the properties of the pure phases to demonstrate that, in the case of vesicles composed of coexisting phases, the diffusional properties of oxygen in each phase are largely modified by the presence of the other. The addition of 10 mol% cholesterol to the gel phase rendered Laurdan fluorescence approximately as quenchable as in the equimolar mixture of the two phases. This result points out that molecules such as cholesterol, which introduce packing defects in the bilayer, favor oxygen diffusion. From the oxygen quenching experiments and using the properties of generalized polarization, the rate of Laurdan dipolar relaxation can be estimated.Abbreviations used Laudran 2-dimethylamino-6-lauroylnapthalene - DLPC dilauroylphosphatidylcholine - DMPC dimyristoylphosphatidylcholine - DPH 1,6-diphenyl-1,3,5-hexatriene - DPPC dipalmitoylphosphatidylcholine - TNS p-tofuidinyl-6-naphthalene sulfonic acid - PBS phosphate-buffered saline solution - GP generalized polarization - NMR nuclear magnetic resonance - EPR electron paramagnetic resonance  相似文献   

16.
The parameters characterizing the absorption and fluorescence of seven 2-substituted benzothiazoles in different solvents and at various acid/base concentrations were studied. It was found that both the kind of substituent and the solvent polarity influenced the changes of the spectral properties of the examined molecules. 2-Aryl substituted benzothiazoles exhibit larger Stokes shifts than 2-heteroaryl derivatives. The linear relationship between solvent polarity and pH values against Stokes shift and fluorescence sensitivity, respectively, was observed. The mostly fluorescent compound was 2-(2-benzofuryl)benzothiazole.  相似文献   

17.
The Fluorescence spectroscopic and solvatochromic behavior of Sulfisoxazole, a sulfa drug with antimicrobial activities, in various pure solvents of different polarity and hydrogen bonding capability is reported. The fluorescence emission spectrum of sulfisoxazole was found to be solvent polarity dependent, where a notable red shift in emission maximum was observed with increasing solvent polarity as well as hydrogen bonding capability. The effects of the latter two solvent parameters were quantitatively investigated using the methods of Lippert–Mataga and solvatochromic comparison method (SCM) that is based on the Kamlet-Taft equation. Particularly, the Lippert–Mataga method was applied to estimate the dipole moment of the excited state (μe) upon plotting Stokes shift versus solvent polarizability (Δf), where a value of 11.54 Debye was obtained. On the other hand, applying the multiple regression analysis to the SCM method revealed that solvent polarizability (π*) and hydrogen-bond donor capability (α) approximately equally stabilize sulfisoxazole in the excited state with minor destabilization contribution by the hydrogen-bond acceptor capability (β). These findings revealed that the excited state of sulfisoxazole is stabilized by polar solvents, indicating that this drug molecules exhibit larger dipole moment in the excited state than in the ground state, which in turn implies that a potential intramolecular charge transfer (ICT) occurs after excitation.  相似文献   

18.
Dielectric relaxation and dipole moment of binary mixtures of homologous series of mono alkyl ethers of ethylene glycol and of diethylene glycol, i.e., mono methyl, mono ethyl and mono butyl ethers of ethylene glycol (ROCH2CH2OH) and mono methyl, mono ethyl and mono butyl ethers of diethylene glycol (ROCH2CH2OCH2CH2OH) with ethyl alcohol (C2H5OH) of different concentrations were studied in dilute solutions of benzene, dioxane and carbon tetrachloride at 35 °C. Permittivity (ε′) and loss (ε″) at 10.1 GHz, static dielectric constant εo at 1 MHz and high frequency limiting dielectric constant ε = nD2 at optical frequency of these molecules and their binary mixtures at different concentration were measured in dilute solutions of non-polar solvents. The average relaxation time τo, relaxation times corresponding to overall molecular reorientation τ1 and group rotations τ2 were determined using Higasi's single frequency measurement equations for dilute solutions. The evaluated values of relaxation times and free energy of activation ΔF were used to explore the solvent effect on molecular dynamics of these polar binary systems in non-polar solvents. The excess inverse relaxation time and excess free energy of activation were determined to confirm the existence of hydrogen-bonded heterogeneous cooperative domains of the ethers and alcohol molecules at different concentration their binary mixtures in non-polar solvents. The dipole moment of the binary mixtures was evaluated using Higasi's and Guggenheim's equation for dilute solutions. The evaluated values of dipole moments and computed dipole moment values using a simple mixing equation of the polar molecules binary mixture were used to explore the effect of non-polar solvent environment on heterogeneous molecular interactions between ethers and alcohol molecules. The effect of number of carbon atoms in the molecular structure of these homologous series molecules was also considered for the interpretation of various evaluated dielectric parameters.  相似文献   

19.
The absorption and emission spectroscopic properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) have been studied in a large number of protogenic, nonprotogenic, and amphiprotic solvents. The data obtained can be explained by the inclussion of a new term in the Lippert equation which takes into account the acidity of the solvent. This finding indicates that some precaution should be taken when using PRODAN as an indicator of the polarity of protein cavities if the environments involved include acid sites.  相似文献   

20.
The solvent relaxation behavior of Patman (6-palmitoyl-2-[[2-(trimethylammonium) ethyl]methylamino]naphthalene chloride) was investigated in small unilamellar vesicles composed of symmetric diacyl( 1,2-dipalmitoylphosphatidylcholine; DPPC) and diether lipids (l,2-dihexadecylphosphatidylcholine; DHPC), calculating time-resolved emission spectra (TRES) and correlation functions. Both the steady-state spectra as a function of temperature and excitation wavelength and the TRES of Patman in DPPC are blue-shifted compared to those in DHPC. The solvent relaxation at three temperatures above and below the phase transition is considerably faster in DHPC than in DPPC. As the steady-state anisotropies of Patman and TMA-DPH [l-(4-trimethylammoniumphenyl)-6-phenyl-l,3,5-hexatriene] are similar in both lipids as a function of both temperature and emission wavelength, we conclude that the introduction of ether linkages allows more efficient water penetration in the glycerol region, leading to a more polar environment and therefore faster solvent relaxation of the incorporated dyes. Using a series ofn-(9-anthroyloxy) fatty acids (n = 2, 3, 6, 9, 12; 16-AP), we show that anisotropy profiles can be used to distinguish between noninterdigitated (DPPC) and fully interdigitated (DHPC) gel-phase structures. 16-(9Antroyloxy) palmitic acid (16-AP) is an especially useful probe exhibiting pronounced differences in the steady-state anisotropies in non- and fully interdigitated gel phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号