首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, a simple and green modification method is developed for biomolecules analysis on poly(dimethylsiloxane) (PDMS) microchip with successful depression of nonspecific biomolecules adsorption. O-[(N-succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) was explored to form hydrophilic surface via in-situ grafting onto pre-coated chitosan (Chit) from aqueous solution in the PDMS microchannel. The polysaccharide chains backbone of Chit was strongly attracted onto the surface of PDMS via hydrophobic interaction combined with hydrogen bonding in an alkaline medium. The methyl-poly(ethylene glycol) (mPEG) could produce hydrophilic domains on the mPEG/aqueous interface, which generated brush-like coating in this way and revealed perfect resistance to nonspecific adsorption of biomolecules. This strategy could greatly improve separation efficiency and reproducibility of biomolecules. Amino acids and proteins could be efficiently separated and successfully detected on the coated microchip coupled with end-channel amperometric detection at a copper electrode. In addition, it offered an effective means for preparing biocompatible and hydrophilic surface on microfluidic devices, which may have potential use in the biological analysis.  相似文献   

2.
Liang RP  Meng XY  Liu CM  Qiu JD 《Electrophoresis》2011,32(23):3331-3340
In this paper, a novel, simple, economical and environmentally friendly method based on in situ chemically induced synthesis strategy was designed and developed for the modification of a poly(dimethylsiloxane) (PDMS) microchip channel with polydopamine/gold nanoparticles (PDA/Au NPs) to create a hydrophilic and biofouling resistant surface. Dopamine as a reductant and a monomer, and HAuCl(4) as an oxidant to trigger dopamine polymerization and the source of metallic nanoparticles, were filled into the PDMS microchannel to yield in situ a well-distributed and robust PDA/Au NP coating. Au NPs were highly and uniformly dispersed in/on the PDA matrix with a narrow size distribution, as verified by scanning electron microscopy and UV-vis spectra. Compared with the native PDMS microchannel, the modified surfaces exhibited much better wettability, high stability and suppressed electroosmotic mobility, and less nonspecific adsorption towards biomolecules. The water contact angle and EOF of PDA/Au NP-coated PDMS microchip were measured to be 13° and 4.17×10(-4) cm(2)/V s, compared to those of 111° and 5.33×10(-4) cm(2)/V s from the native one, respectively. Fast and efficient separations of five amino acids such as arginine, proline, histidine, valine and threonine suggested greatly improved electrophoretic performance of the PDA/Au NP-functionalized PDMS microchips. This one-step procedure offers an effective approach for a biomimetic surface design on microfluidic chips, which is promising in high-throughput and complex biological analysis.  相似文献   

3.
A novel polydimethylsiloxane (PDMS) surface modification method for microchip electrophoresis has been developed to make a stable and sufficient electroosmotic flow (EOF). Poly(l-glutamic acid) (PGA) which had ionizable carboxyl groups at a high pH-range was immobilized on the surface of microchannel fabricated with PDMS. The surface modification involved surface oxidation by plasma, the silanization of 3-aminopropyldimethylethoxysilane (APDMES) and immobilization of PGA via amide bond. The modified channel was extremely stable against consecutive electric power supply over 5h, and its long-term stability was demonstrated by the efficient separation of four amino acid derivatives reproducibly after a week. Additionally, homocysteine (Hcy), important risk factor of cardiovascular disease, osteoporosis and problems in pregnancy, was successfully measured in human serum in modified PDMS channel with the other thio amino acid simultaneously.  相似文献   

4.
A novel covalent strategy was developed to modify the poly(dimethylsiloxane) (PDMS) surface. Briefly, dextran was selectively oxidized to aldehyde groups with sodium periodate and subsequently grafted onto amine-functionalized PDMS surface via Schiff base reaction. As expected, the coated PDMS surface efficiently prevented the biomolecules from adsorption. Electro-osmotic flow (EOF) was successfully suppressed compared with that on the native PDMS microchip. Moreover, the stability of EOF was greatly enhanced and the hydrophilicity of PDMS surface was also improved. To apply thus-coated microchip, the separation of peptides, protein and neurotransmitters was investigated in detail. For comparison, these analytes were also measured on the native PDMS microchips. The results demonstrated that these analytes were efficiently separated and detected on the coated PDMS microchips. Furthermore, the relative standard deviations of their migration times for run-to-run, day-to-day, and chip-to-chip reproducibilities were in the range of 0.6-2.7%. In addition, the coated PDMS microchips showed good stability within 1 month.  相似文献   

5.
This paper reports on the study of electroosmotic flow (EOF) in poly(dimethylsiloxane) (PDMS) microchannels on the basis of indirect amperometric detection method. Gradual increase of EOF rate in freshly prepared PDMS microchannels was observed with the running buffer of phosphate buffer solution (PBS). With the same concentration (10 mM) of PBS containing different cations and the same pH value (7.0) and, the time of the stable EOF in PDMS microchannels under the applied separation voltage of 1000 V was 49.8 s (Li+ -PBS), 57.1 s (Na+ -PBS), 91 s (K+ -PBS), respectively. Meanwhile, the different adsorption of cations (Li+, Na+ and K+) on hydrophobic PDMS wall was observed through their separation in PDMS microchannels. Such experimental results demonstrated that the EOF in PDMS microchannels came from the cations and anions adsorbed on PDMS wall. This study would not only help us understand the surface state of PDMS, but also provide a useful guidance for establishing the effective surface modification methods in PDMS microchip CE.  相似文献   

6.
Lee GB  Lin CH  Lee KH  Lin YF 《Electrophoresis》2005,26(24):4616-4624
This paper presents systematic investigation of the microchannel surface properties in microCE chips. Three popular materials for microCE chips, polydimethylsiloxane (PDMS), quartz, and glass, are used. The zeta potentials of these microchannels are calculated by measuring the EOF velocity to evaluate the surface properties after surface modification. The hydrophobic PDMS is usually plasma-treated for microCE applications. In this study, a new method using a high-throughput atmospheric plasma generator is adopted to treat the PDMS surface under atmospheric conditions. In this approach, the cost and time for surface treatment can be significantly reduced compared with the conventional vacuum plasma generator method. Experimental results indicate that new functional groups could be formed on the PDMS surface after treatment, resulting in a change in the surface property. The time-dependent surface property of the plasma-treated PDMS is then measured in terms of the zeta potential. Results show that the surface property will reach a stable condition after 1 h of plasma treatment. For glass CE chips, two new methods for changing the microchannel surface properties are developed. Instead of using complicated and time-consuming chemical silanization procedures for CE channel surface modification, two simple and reliable methods utilizing organic-based spin-on-glass and water-soluble acrylic resin are reported. The proposed method provides a fast batch process for controlling the surface properties of glass-based CE channels. The proposed methods are evaluated using PhiX-174 DNA maker separation. The experimental data show that the surface property is modified and separation efficiency greatly improved. In addition, the long-term stability of both coatings is verified in this study. The methods proposed in this study show potential as an excellent solution for glass-based microCE chip surface modification.  相似文献   

7.
Xu Y  Takai M  Konno T  Ishihara K 《Lab on a chip》2007,7(2):199-206
A type of charged phospholipid polymer biointerface was constructed on a quartz microfluidic chip to control the electroosmotic flow (EOF) and to suppress non-specific protein adsorption through one-step modification. A negatively charged phospholipid copolymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), potassium 3-methacryloyloxypropyl sulfonate (PMPS) and 3-methacryloxypropyl trimethoxysilane (MPTMSi) moieties (referred to as PMBSSi) was synthesized to introduce such phosphorylcholine segments as well as surface charges onto the silica-based microchannels via chemical bonding. At neutral pH, the homogenous microchannel surface modified with 0.3 wt% PMBSSi in alcoholic solution, retained a significant cathodic EOF ((1.0 +/- 0.1) x 10(-4) cm(2) V(-1) s(-1)) with approximately one-half of the EOF of the unmodified microchannel ((1.9 +/- 0.1) x 10(-4) cm(2) V(-1) s(-1)). Along with another non-charged copolymer (poly(MPC-co-MPTMSi), PMSi), the regulation of the surface charge density can be realized by adjusting the concentration of PMBSSi or PMSi initial solutions for modification. Coincidently, the zeta-potential and the EOF mobility at neutral pH showed a monotonically descending trend with the decrease in the charge densities on the surfaces. This provides a simple but feasible approach to controlling the EOF, especially with regard to satisfying the requisites of miniaturized systems for biological applications requiring neutral buffer conditions. In addition, the EOF in microchannels modified with PMBSSi and PMSi could maintain stability for a long time at neutral pH. In contrast to the EOF in the unmodified microchannel, the EOF in the modified microchannel was only slightly affected by the change in pH (from 1 to 10). Most importantly, although PMBSSi possesses negative charges, the non-specific adsorptions of both anionic and cationic proteins (considering albumin and cytochrome c, respectively, as examples) were effectively suppressed to a level of 0.15 microg cm(-2) and lesser in the case of the 0.3 wt% PMBSSi modification. Consequently, the variation in the EOF mobility resulting from the protein adsorption was also suppressed simultaneously. To facilitate easy EOF control with compatibility to biomolecules delivered in the microfluidic devices, the charged interface described could provide a promising option.  相似文献   

8.
Wu D  Zhao B  Dai Z  Qin J  Lin B 《Lab on a chip》2006,6(7):942-947
In order to achieve a simple covalent hydrophilic polymer coating on poly(dimethylsiloxane) (PDMS) microfluidic chip, epoxy modified hydrophilic polymers were synthesized in aqueous solution with a persulfate radical initiation system, and crosslinked onto PDMS pretreated by oxygen plasma and silanized with 3-aminopropyl-triethoxysilanes (APTES). Glycidyl methacrylate (GMA) was copolymerized with acrylamide (poly(AAM-co-GMA)) or dimethylacrylamide (poly(DAM-co-GMA)), and graft polymerized with polyvinylpyrrolidone (PVP-g-GMA) or polyvinylalcohol (PVA-g-GMA). The epoxy groups in the polymers were determined by UV spectra after derivation with benzylamine. Reflection absorption infrared spectroscopy (RAIRS) confirmed covalent grafting of GMA-modified polymers onto PDMS surface. Electroosmotic flow (EOF) in the polymer grafted microchannel was strongly suppressed within the range pH 3-11. Surface adsorption of lysozyme and bovine serum albumin (BSA) was reduced to less than 10% relative to that on the native PDMS surface. On the GMA-modified polymer coated PDMS microchip, basic proteins, peptides, and sodium dodecyl sulfate (SDS) denatured proteins were separated successfully.  相似文献   

9.
A stable BSA blocking poly(dimethylsiloxane) (PDMS) microchannel was prepared based on in situ synthesized PDMS–gold nanoparticles composite films. The modified microchip could successfully suppress protein adsorption. The assembly was followed by contact angle, charge-coupled device (CCD) imaging, electroosmotic flow (EOF) measurements and electrophoretic separation methods. Contact angle measurements revealed the coated surface was hydrophilic, water contact angle for coated chips was 45.2° compared to a water contact angle for native PDMS chips of 88.5°. The coated microchips exhibited reproducible and stable EOF behavior. With FITC-labeled myoglobin incubation in the coated channel, no fluorescence was observed with CCD image, and the protein exhibited good electrophoretic effect in the modified microchip.  相似文献   

10.
Xu Y  Jiang H  Wang E 《Electrophoresis》2007,28(24):4597-4605
Herein, a hybrid system consisting of ionic liquid (IL) and nonionic surfactant has been successfully developed for dynamic modification of PDMS microchips and analyte adsorption such as fluoresent dyes and proteins has been efficiently suppressed. Mutual authentication between microchip electrophoresis and confocal laser scanning microscope was carried out to characterize the multiple novel functions of the IL-containing system and a possible mechanism was raised. Soluble IL used herein not only played the role as supporting electrolyte, but also provided increased EOF in the PDMS microchannel compared with common electrolytes such as phosphate buffer. Due to the high ionic conductivity of IL, on-column field-amplified sample stacking effect was four-fold higher than that without IL. Furthermore, an excellent synergistic effect existed between IL and nonionic surfactant, which enhanced the ability of resolving analyte adsorption to PDMS surface, and was demonstrated in the sensitive and efficient determination of rhodamine B (with detection limit of 8 nM) and a well separated mixture of proteins.  相似文献   

11.
An electroosmotic flow (EOF)-switchable poly(dimethylsiloxane) (PDMS) microfluidic channel modified with cysteine has been developed. The native PDMS channel was coated with poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles by layer-by-layer technique was assembled on PDDA to immobilize cysteine. The assembly was followed by infrared spectroscopy/attenuated total reflection method, contact angle, EOF measurements and electrophoretic separation methods. EOF of this channel can be reversibly switched by varying the pH of running buffer. At low pH, the surface of channels is positively charged, EOF is from cathode to anode. At high pH, the surface is negatively charged, EOF is from anode to cathode. At pH 5.0, near the isoelectric point of the chemisorbed cysteine, the surfaces of channels show neutral. When pH is above 6.0 or below 4.0, the magnitude of EOF varies in a narrow range. And the modified channel surface displayed high reproducibility and good stability, a good reversibility of cathodic-anodic EOF transition under the different pH conditions was observed. Separation of dopamine and epinephrine as well as arginine and histidine were performed on the modified chip.  相似文献   

12.
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecules of varying chain lengths. The native PDMS surface is pretreated by exposure to UV irradiation or to an oxygen plasma, and the covalent linkage of POE-silanes as well as physical adsorption of a triblock-copolymer (F108) are studied. Contact angle measurements and atomic force microscopy (AFM) imaging revealed homogeneous attachment of POE-silanes and F108 to the PDMS surfaces. In the case of F108, different adsorption mechanisms to hydrophilic and hydrophobic PDMS are discussed. Determination of the electroosmotic mobilities of these coatings in PDMS microchannels prove their use for electrokinetic applications in which EOF reduction is inevitable and protein adsorption has to be suppressed.  相似文献   

13.
A novel and simple method based on layer-by-layer (LBL) technique has been developed for the modification of the channel in PDMS electrophoresis microchip to create a hydrophilic surface with a stable EOF. The functional surface was obtained by sequentially immobilizing chitosan and deoxyribonucleic acid (DNA) onto the microfluidic channel surface using the LBL assembly technique. Compared to the native PDMS microchips, the contact angle of the chitosan-DNA modified PDMS microchips decreased and the EOF increased. Experimental conditions were optimized in detail. The chitosan-DNA modified PDMS microchips exhibited good reproducibility and long-term stability. Separation of uric acid (UA) and ascorbic acid (AA) performed on the modified PDMS microchip generated 43,450 and 46,790 N/m theoretical plates compared with 4048 and 19,847 N/m with the native PDMS microchip. In addition, this method has been successfully applied to real human urine samples, without SPE, with recoveries of 97-105% for UA and AA.  相似文献   

14.
Pan T  Fiorini GS  Chiu DT  Woolley AT 《Electrophoresis》2007,28(16):2904-2911
A new technique for polymer microchannel surface modification, called in-channel atom-transfer radical polymerization, has been developed and applied in the surface derivatization of thermoset polyester (TPE) microdevices with poly(ethylene glycol) (PEG). X-ray photoelectron spectroscopy, electroosmotic flow (EOF), and contact angle measurements indicate that PEG has been grafted on the TPE surface. Moreover, PEG-modified microchannels have much lower and more pH-stable EOF, more hydrophilic surfaces and reduced nonspecific protein adsorption. Capillary electrophoresis separation of amino acid and peptide mixtures in these PEG-modified TPE microchips had good reproducibility. Phosducin-like protein and phosphorylated phosducin-like protein were also separated to measure the phosphorylation efficiency. Our results indicate that PEG-grafted TPE microchips have broad potential application in biomolecular analysis.  相似文献   

15.
The necessity for microchannel wall coatings in capillary and chip-based electrophoretic analysis of biomolecules is well understood. The regulation or elimination of EOF and the prevention of analyte adsorption is essential for the rapid, efficient separation of proteins and DNA within microchannels. Microchannel wall coatings and other wall modifications are especially critical for protein separations, both in fused-silica capillaries, and in glass or polymeric microfluidic devices. In this review, we present a discussion of recent advances in microchannel wall coatings of three major classes--covalently linked polymeric coatings, physically adsorbed polymeric coatings, and small molecule additives. We also briefly review modifications useful for polymeric microfluidic devices. Within each category of wall coatings, we discuss those used to eliminate EOF, to tune EOF, to prevent analyte adsorption, or to perform multiple functions. The knowledgeable application of the most promising recent developments in this area will allow for the separation of complex protein mixtures and for the development of novel microchannel wall modifications.  相似文献   

16.
In the present report, the use of negatively charged surfactants as modifiers of the background electrolyte is reported using poly(dimethylsiloxane) (PDMS) microchips. In particular, the use of anionic surfactants, such as sodium dodecyl sulfate, phosphatidic acid, and deoxycholate, was studied. When surfactants were present in the run buffer, an increase in the electroosmotic flow (EOF) was observed. Two additional effects were also observed: (i) stabilization of the run-to-run EOF, (ii) an improvement in the electrochemical response for several biomolecules. In order to characterize the analysis conditions, the effects of different surfactant, electrolyte, and pH were studied. EOF measurements were performed using either the current monitoring method or by detection of a neutral molecule. The first adsorption/desorption kinetics studies are also reported for different surfactants onto PDMS. The separation of biologically important analytes (glucose, penicillin, phenol, and homovanillic acid) was improved decreasing the analysis time from 200 to 125 s. However, no significant changes in the number of theoretical plates were observed.  相似文献   

17.
CZE has become widespread for the separation and analysis of biomolecules such as proteins and peptides, due to factors such as, the speed of the separations, low sample volume, and high resolution associated with the technique. However, the separation of biomolecules by CZE does present a significant challenge due to the electrostatic attraction and adsorption of cationic, or cation containing, biomolecules to the capillary surface. To that end numerous methods have been developed to passivate, or protect the surface, in order to prevent the adsorption of analytes. Yet, in the process of protecting the capillary surface, the potential for further modification of the EOF, a factor crucial to effective analyte resolution, is greatly diminished. In seeking to overcome this limitation we have explored the potential of incorporating a range of metal cations into a phospholipid bilayer capillary coating. It has previously been established that the inclusion of calcium into the separation buffer with a phospholipid coating will reverse the EOF in the capillary. Here, we present our investigation of a broader range of metal cations included in the separation buffer (Ca2+, Mg2+, Co2+, Ni2+, Sr2+, Ba2+, and Ce3+) revealing that the choice of metal cation can drastically influence the EOF, with observed values between ?3.80 × 10?4 and ?5.74 × 10?5 cm2/V·s.  相似文献   

18.
Bingyan Han 《Talanta》2009,79(3):959-962
This paper described a double-chained cationic surfactant, didodecyldimethylammonium bromide (DDAB), for dynamic surface modification of poly(dimethylsiloxane) (PDMS) microchips to reduce the fluorescent dyes adsorption onto the microchannel. When DDAB with a high concentration was present as the dynamic modification reagent in the running and sample buffer, it not only reversed the direction of electroosmotic flow, but also efficiently suppressed fluorescent dyes pyronine Y (PY) or rhodamine B (RB) adsorption onto the chip surface. In addition, vesicles formed by DDAB in the buffer with higher surface charge density and electrophoretic mobility could provide wider migration window and potential for the separation of compounds with similar hydrophobicity. Factors affecting modification, such as pH and concentrations of the buffer, DDAB concentration in the buffer were investigated. Compared with commonly used single-chained cetyltrimethylammonium bromide, DDAB provided a better modification performance. Furthermore, PY and RB were separated successfully on a PDMS microchip at the appropriate conditions with DDAB.  相似文献   

19.
In this paper, using the self‐polymerization of norepinephrine (NE) and its favorable film‐forming property, a simple and green preparation approach was developed to modify a PDMS channel for enantioseparation of chiral compounds. After the PDMS microchip was filled with NE solution, poly(norepinephrine) (PNE) film was gradually formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of NE by the oxygen dissolved in the solution. Due to possessing plentiful catechol and amine functional groups, the PNE‐coated PDMS microchip exhibited much better wettability, more stable and suppressed EOF, and less nonspecific adsorption. The water contact angle and EOF of PNE‐coated PDMS substrate were measured to be 13° and 1.68 × 10?4 cm2 V?1 s?1, compared to those of 108° and 2.24 × 10?4 cm2 V?1 s?1 from the untreated one, respectively. Different kinds of chiral compounds, such as amino acid enantiomer, drug enantiomer, and peptide enantiomer were efficiently separated utilizing a separation length of 37 mm coupled with in‐column amperometric detection on the PNE‐coated PDMS microchips. This facile mussel‐inspired PNE‐based microchip system exhibited strong recognition ability, high‐performance, admirable reproducibility, and stability, which may have potential use in the complex biological analysis.  相似文献   

20.
In this paper, glucose oxidase (GOx) was employed to construct a functional film on the poly(dimethylsiloxane) (PDMS) microfluidic channel surface and apply to perform electrophoresis coupled with in‐channel electrochemical detection. The film was formed by sequentially immobilizing poly(diallyldimethylammonium chloride) (PDDA) and GOx to the microfluidic channel surface via layer‐by‐layer (LBL) assembly. A group of neurotransmitters (5‐hydroxytryptamine, 5‐HT; dopamine, DA; epinephrine, EP; dobuamine, DBA) as a group of separation model was used to evaluate the effect of the functional PDMS microfluidic devices. Electroosmotic flow (EOF) in the modified PDMS microchannel was well suppressed compared with that in the native one. Experimental conditions were optimized in detail. As expected, these analytes were efficiently separated within 110 s in a 3.7 cm long separation channel and successfully detected at a single carbon fiber electrode. Good performances were attributed to the decreased EOF and the interactions of analytes with the immobilized GOx on the PDMS surface. The theoretical plate numbers were 2.19×105, 1.89×105, 1.76×105, and 1.51×105 N/m at the separation voltage of 1000 V with the detection limits of 1.6, 2.0, 2.5 and 6.8 μM (S/N=3) for DA, 5‐HT, EP and DBA, respectively. In addition, the modified PDMS channels had long‐term stability and excellent reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号