首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

2.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

3.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

4.
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A), the Poisson's ratio (υ), the Grüneisen parameter (γ), the Debye temperature ΘD on pressure and temperature are also successfully obtained.  相似文献   

5.
A first-principles pseudopotential method is used to investigate the structural and elastic properties of ScAs and ScSb in their ambient B1(NaCl) and in high pressure B2 (CsCl) phases and phonon structures at zero and close to phase transition pressure. The calculated lattice constants, static bulk modulus, first order pressure derivative of the bulk modulus and the elastic constants are reported in B1 and B2 structures and compared with available experimental and other theoretical results. The phonon properties of these two compounds are compared among themselves which reveal that these compounds are predominantly metallic, due to degeneracy of optical frequencies at the zone centre. At high pressure, near the B1 to B2 transition, the LA mode at X-point softens leading to structural instability.  相似文献   

6.
The high pressure structural, elastic and thermal properties of holmium pnictides HoX (X=N, P, As and Bi) were investigated theoretically by using an inter-ionic potential theory with modified ionic charge parameter. We have predicted a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at pressure of 139 GPa for HoN, 52 GPa for HoP, 44 GPa for HoAs and 26 GPa for HoBi. Other properties, such as lattice constant, bulk modulus, cohesive energy, second and third-order elastic constants were calculated and compared with the available experimental and theoretical data. In order to gain further information the brittle behaviour of these compounds was observed. Some other properties like Shear modulus (G), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), sound velocities, Debye temperature (θD) were calculated. The variation of elastic constants (C11 and C44) and Debye temperature (θD) with pressure was also presented.  相似文献   

7.
Structural, elastic and mechanical properties of orthorhombic SrHfO3 under pressure have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory. The calculated equilibrium lattice parameters and elastic constants of orthorhombic SrHfO3 at zero pressure are in good agreement with the available experimental and calculational values. The lattice parameters, total enthalpy, elastic constants and mechanical stability of orthorhombic SrHfO3 as a function of pressure were studied. With the increasing pressure, the lattice parameters and volume of orthorhombic SrHfO3 decrease whereas the total enthalpy increases. Orthorhombic SrHfO3 is mechanically stable with low pressure (<52.9 GPa) whereas that is mechanically instable with high pressure (>52.9 GPa). The bulk modulus, shear modulus, Young's modulus and mechanical anisotropy of orthorhombic SrHfO3 as a function of pressure were analyzed. It is found that orthorhombic SrHfO3 under pressure has larger bulk modulus, better ductility and less mechanical anisotropy than orthorhombic SrHfO3 at 0 GPa.  相似文献   

8.
牛兴平  孙兆楼 《计算物理》2017,34(4):468-474
利用基于密度泛函理论的第一性原理平面波赝势方法结合准谐德拜模型研究NaCl结构的CaS在高压下的弹性和热力学性质.计算得到的零温零压下的晶格常数、体弹模量与实验值符合得很好.弹性常数和弹性模量随着压强的增大而增大.压强对体弹模量和热膨胀系数的影响大于温度的影响.热容随压强的升高而降低,在高温下热容接近于Dulong-Petit极限.通过求解Gibbs自由能计算得到B1结构和B2结构CaS的相变压为36.61 GPa.  相似文献   

9.
We have predicted high pressure structural behavior and elastic properties of alkaline earth tellurides (AETe; AE = Ca, Sr, Ba) by using two body interionic potential approach with modified ionic charge (Z m e). This method has been found quite satisfactory in case of the rare earth compounds. The equation of state curve, structural phase transition pressure from NaCl (B1) to CsCl (B2) phase and associated volume collapse at transition pressure of alkaline earth tellurides (AETe) obtained from this approach, so have been compared with experimentally measured data reveal good agreement. We have also investigated bulk modulus, second and third order elastic constants and pressure derivatives of second order elastic constants at ambient pressure which shows predominantly ionic nature of these compounds. First time, we have calculated the Poisson ratio, Young and Shear modulus of these compounds.   相似文献   

10.
The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD) with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.  相似文献   

11.
The results are presented of first-principles calculations of the structural, elastic and lattice dynamical properties of GdX (X = Bi, Sb). In particular, the lattice parameters, bulk modulus, phonon dispersion curves, elastic constants and their related quantities, such as Young's modulus, Shear modulus, Zener anisotropy factor, Poisson's ratio, Kleinman parameter, and longitudinal, transverse and average sound velocities, were calculated and compared with available experimental and other theoretical data. The temperature and pressure variations of the volume, bulk modulus, thermal expansion coefficient, heat capacities, Grüneisen parameter and Debye temperatures were predicted in wide pressure (0?50 GPa) and temperature ranges (0–500 K). The plane-wave pseudopotential approach to the density-functional theory within the GGA approximation implemented in VASP (Vienna ab initio simulation package) was used in all computations.  相似文献   

12.
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential–Linear Augment Plane Wave method (FP–LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson’s ratio, Young’s modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.  相似文献   

13.
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν are calculated by the Voigt–Reuss–Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature Θ D calculated from elastic modulus increases along with the pressure.  相似文献   

14.
The structural phase stability, elastic parameters and thermodynamic properties of YN at normal and under high pressure are reported. The calculations are mainly performed using the full-potential linearized augmented plane wave method within the density functional theory. Both local density approximation (LDA) and generalized gradient approximation (GGA) are used to model the correlation-exchange potential. The calculated equilibrium lattice parameter and the bulk modulus show good accordance with the experimental and previous theoretical reports. The phase transition from the NaCl (B1) structure to the CsCl (B2) structure is found to occur at 131?GPa within GGA and 115?GPa within LDA. The linear pressure coefficients of the different elastic moduli being addressed here are also determined along with the mechanical and dynamical stability criteria which are shown to be satisfied for YN with B1 phase under normal conditions. Besides, the heat capacity and other thermodynamic parameters are examined and discussed versus temperature.  相似文献   

15.
Using pseudo-potential plane-wave method based on the density functional theory in conjunction with the generalized gradient approximation, structural parameters, electronic structures, elastic stiffness and thermal properties of M2PC, with M=V, Nb, Ta, were studied. The optimized zero pressure geometrical parameters are in good agreement with the available results. Pressure effect, up to 20 GPa, on the lattice parameters was investigated. Electronic properties are studied throughout the calculation of densities of states and band structures. The elastic constants and their pressure dependence were predicted using the static finite strain technique. We performed numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio and average sound velocity for ideal polycrystalline M2PC aggregates in framework of the Voigt-Reuss-Hill approximation. We estimated the Debye temperature and the theoretical minimum thermal conductivity of M2PC.  相似文献   

16.
We have studied the structural, electronic and phonon properties of the YP and YAs compounds in NaCl(B1) and CsCl(B2) structures using the density functional theory within the generalized gradient approximation (GGA). The calculated lattice constants, static bulk modulus, first-order pressure derivative of the bulk modulus and transition pressure are reported and compared with previous calculations. We have carried out the calculations of band structure and density of states (DOS) for YP and YAs. Then, a linear-response approach to the density-functional theory is used to derive the phonon frequencies and DOS in both B1 and B2 structures.  相似文献   

17.
王金荣  朱俊  郝彦军  姬广富  向钢  邹洋春 《物理学报》2014,63(18):186401-186401
采用密度泛函理论中的赝势平面波方法系统地研究了高压下RhB的结构相变、弹性性质、电子结构和硬度.分析表明,RhB在25.3 GPa时从anti-NiAs结构相变到FeB结构,这两种结构的弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显.电子态密度的计算结果显示,这两种结构是金属性的,且费米能级附近的峰随着压强的增大向两侧移动,赝能隙变宽,轨道杂化增强,共价性增强,非局域化更加明显.此外,硬度计算结果显示,anti-NiAs-RhB的金属性比较弱,有着较高的硬度,属于硬质材料.  相似文献   

18.
In this work, we have extended our study of the mechanical properties and the electronic structure of PbTe to include other Pb chalcogenide compounds (PbSe, PbS). The calculations were performed self-consistently using the scalar-relativistic full-potential linearized augmented plane wave method. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) to density-functional theory were applied.The equilibrium lattice constants and the bulk modulus of a number of structures (NaCl, CsCl, ZnS) were calculated as well as the elastic constants for the structures (NaCl, CsCl). The NaCl structure is found to be the most stable one among all the three phases considered. We have found that the GGA predicts the elastic constants in good agreement with experimental data.Both the LDA and GGA were successful in predicting the location of the band gap at the L point of the Brillouin zone but they are inconclusive regarding the value of the band-gap width. To resolve the issue of the gap, we performed Slater-Koster (SK) tight-binding calculations, including the spin-orbit coupling in the SK Hamiltonian. The SK results that are based on our GGA calculations give the best agreement with experiment.Results are reported for the pressure dependence of the energy gap of these compounds in the NaCl structure. The pressure variation of the energy gap indicates a transition to a metallic phase at high pressure. Band structure calculations in the CsCl structure show a metallic state for all compounds. The electronic band structure in the ZnS phase shows an indirect band gap at the W and X point of the Brillouin zone.  相似文献   

19.
We present in this paper the results of an ab initio theoretical study within the local density approximation (LDA) to determine in rock-salt (B1), cesium chloride (B2), zinc-blende (B3), and tungsten carbide (WC) type structures, the structural, elastic constants, hardness properties and high-pressure phase of the noble metal carbide of ruthenium carbide (RuC).The ground state properties such as the equilibrium lattice constant, elastic constant, the bulk modulus, its pressure derivative, and the hardness in the four phases are determined and compared with available theoretical data. Only for the three phases B1, B3, and WC, is the RuC mechanically stable, while in the B2 phase it is unstable, but in B3 RuC is the most energetically favourable phase with the bulk modulus 263 GPa, and at sufficiently high pressure (Pt=19.2 GPa) the tungsten carbide (WC) structure would be favoured, where ReC-WC is meta-stable.The highest bulk modulus values in the B3, B2, and WC structures and the hardnesses of H(B3)=36.94 GPa, H(B1)=25.21 GPa, and H(WC)=25.30 GPa indicate that the RuC compound is a superhard material in B3, and is not superhard in B1 and WC structures compared with the H(diamond)=96 GPa.  相似文献   

20.
The study aims at the elastic, mechanical, electronic properties and hardness of Nb2AsC using first principles based on the density functional theory method within the generalised gradient approximation. The calculated lattice parameters of Nb2AsC are in good agreement with the experimental data. The five independent elastic constants are firstly calculated as a function of pressure, and our results indicate that it is mechanically stable in the applied pressure. The elastic anisotropy is examined through the computation of the direction dependence of Young's modulus. The pressure dependences of the bulk modulus, shear modulus, average velocity of acoustic waves and Debye temperature of Nb2AsC are systematically investigated. The band structure and density of states are discussed, and the results show that the strong hybridisations C p–Nb d and As p–Nb d would be beneficial to the structure stability of Nb2AsC. Based on the Mulliken population analysis, the hardness of Nb2AsC is predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号