首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations based on density functional theory within the generalized gradient approximation have been performed for the Sn1−xPbxO2 solid solution. The doped formation energies and electronic structures are also analyzed. Results show that the Sn0.9375Pb0.0625O2 solid solution has the highest stability because of its minimum formation energy value of 0.04589 eV at a doping ratio of 0.0625. The SnO2 lattice constants expand in a distorted rutile structure after Pb doping. The band structure and density of states calculations indicate that the band gap of SnO2 narrowed due to the presence of the Pb impurity energy levels in the forbidden band, namely, Pb 6s energy band overlaps with the conductivity band in the F–Q direction. In addition, the number of electrons filled at the bottom of the conduction band increases from 0.13 to 3.96 after doping, resulting in the strengthening of the conductivity of the solid solution after doping of plumbum. The results provide a theoretical basis for the development and application of the Sn1−xPbxO2 solid solution electrode.  相似文献   

2.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

3.
Polycrystalline Sn1−xMnxO2 (0≤x≤0.05) diluted magnetic semiconductors were prepared by solid-state reaction method and their structural and magnetic properties had been investigated systematically. The three Mn-doped samples (x=0.01, 0.03, 0.05) undergo paramagnetic to ferromagnetic phase transitions upon cooling, but their Curie temperatures are far lower than room temperature. The magnetization cannot be attributed to any identified impurity phase. It is also found that the magnetization increases with increasing Mn doping, while the ratio of the Mn ions contributing to ferromagnetic ordering to the total Mn ions decreases.  相似文献   

4.
In this paper, we have investigated Mn-doped SnO2 powder samples prepared by solid-state reaction method. X-ray diffraction showed a single phase polycrystalline rutile structure. The atomic content of Mn ranged from ∼0.8 to 5 at%. Room temperature M-H loops showed a ferromagnetic behavior for all samples. The ferromagnetic Sn0.987Mn0.013O2 showed a coercivity Hc=545 Oe, which is among the highest reported for dilute magnetic semiconductors. The magnetic moment per Mn atom was estimated to be about 2.54 μB of the Sn0.9921Mn0.0079O2 sample. The average magnetic moment per Mn atom sharply decreases with increasing Mn content, while the effective fraction of the Mn ions contributing to the magnetization decreases. The magnetic properties of the Sn1−xMnxO2 are discussed based on the competition between the antiferromagnetic superexchange coupling and the F-center exchange coupling mechanism, in which both oxygen vacancies and magnetic ions are involved.  相似文献   

5.
A theoretical study on Sb-doped SnO2 has been carried out by means of periodic density functional theory (DFT) at generalized gradient approximation (GGA) level. Stability and conductivity analyses were performed based on the formation energy and electronic structures. The results show that Sn0.5Sb0.5O2 solid solution is stable because the formation energy of Sn0.5Sb0.5O2 is −0.06 eV. The calculated energy band structure and density of states showed that the band gap of SnO2 narrowed due to the presence of the Sb impurity energy levels in the bottom of the conduction band, namely there is Sb 5s distribution of electronic states from the Fermi level to the bottom of conduction band after the doping of antimony. The studies provide a theoretical basis to the development and application of Sn1−xSbxO2 solid solution electrode.  相似文献   

6.
We investigate the chemical pressure effect due to P doping in the CeFeAs1−xPxO0.95F0.05(0≤x≤0.4) system. The compound CeFeAsO0.95F0.05 without P doping is on the boundary between antiferromagnet (AFM) and superconductor. The AFM order of Ce3+ local moments causes a significant reentrance behavior in both resistivity and magnetic susceptibility. Upon P doping, Tc increases and reaches a maximum of 21.3 K at x=0.15, and then it is suppressed to lower temperatures. Meanwhile, the AFM order of Ce3+ ions remains nearly the same in the whole doping range (0≤x≤0.4). Our experimental results suggest a competition between superconductivity and Kondo effect in the Ce 1111 system.  相似文献   

7.
The structural, electronic and elastic properties of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys have been investigated by using the plane-wave pseudopotential method within the density-functional theory. The calculations indicate that the variations of the equilibrium lattice constants and bulk modulus with the composition are found to be linear. The calculated elastic constants C44 and shear constants as a function of alloy concentration reveal the anisotropic hardness of these compounds. The partial and total density of states (DOS) for the binary and ternary compounds had been obtained, and the metallic behavior of these alloys had been confirmed by the analysis of DOS.  相似文献   

8.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

9.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

10.
The electronic and optical properties of the direct band gap alloys SnxGe1 − x (x = 0.000, 0.042, 0.083, 0.125, 0.167, and 0.208) have been studied by using the generalized gradient approximation in the framework of the density functional theory. The calculated lattice constants obey Vergard's law. The band structures show that the alloys have direct band gap and the band gaps can be tunable by Sn contents. The optical properties of the SnxGe1 − x alloys with the physical quantities such as the complex dielectric function, the energy-loss function and the static dielectric constant, respectively, are shown to support the potential application of infrared devices in the future.  相似文献   

11.
Structural and magnetic properties were studied in powder form of Sn1−xCrxO2 with x=0.01, 0.02, 0.03, 0.04 and 0.05 in nominal composition. The structural parameters were obtained at room temperature by the Rietveld refinement of the x-ray powder diffraction profiles. Samples of x=0 to 0.04 are tetragonal phase with a space group P42/mnm. The lattice parameters indicate three-step changes with increasing Cr content. The distortion of the metal-oxygen octahedral unit occurs. The substitution of Cr ions on the Sn sites shortens the lattice parameters and the octahedral unit becomes elongated with a displacement of an apical oxygen from x=0 to x=0.02. The incorporation of Cr over x=0.02 leads to the recovery of the length of lattice parameters together with a relaxation of the octahedral unit. This result indicates a possible interstitial occupation of Cr ions from x=0.03 to x=0.04. The Cr doping reaches a saturation limit at x=0.05 with a trace of the excess Cr oxides in the x-ray study. A room temperature ferromagnetism appears in the sample with x=0.01 and becomes remarkable in one with x=0.02. The magnetization decreases with increasing the Cr doping with the amount x>0.02. Thus, the appearance of ferromagnetism highly correlated with the oxygen displacements at the apical position of the octahedral in the Sn1−xCrxO2 system at room temperature. The critical oxygen displacement in the elongated octahedral at around x=0.02 may encourage the vacancy of the apical oxygen and eventually leads to appearance of a ferromagnetism based on an F-center exchange with a micro- and/or nano-structural transition. The observed ferromagnetism is highly correlated with the averaged structural change appeared in the x-ray powder diffraction.  相似文献   

12.
The structural, magnetic and electrical transport properties of Zn-doped antiperovskite compounds Ga1−xZnxCMn3 (0≤x≤0.30) have been investigated. After partial substitution of Zn for Ga, the Curie temperature increases monotonously and the ground antiferromagnetic (AFM)-ferromagnetic intermediate (FI) phase transition is gradually suppressed. With increasing the doping level x, the saturated magnetizations decreases gradually firstly for x≤0.20, then increases with increasing x. The electrical transport properties of Ga1−xZnxCMn3 are studied at different magnetic fields. Enhanced giant magnetoresistance (GMR) was observed around the AFM-FI transition. With increasing x, the maximal values and peak widths of GMR increase. Particularly, for x=0.20, GMR reaches a maximum value of 75%, spanning a temperature range of 80 K at 50 kOe and displays the behavior of strongly depending on the magnetization history. The possible origins are discussed.  相似文献   

13.
The structural parameters with stability upon Si incorporation and elastic, electronic, thermodynamic and optical properties of Ti3Al1−xSixC2 (0≤x≤1) are investigated systematically by the plane wave pseudopotential method based on the density functional theory (DFT). The increase of some elastic parameters with increasing Si-content renders the alloys to possess higher compressive and tensile strength. The Vickers hardness value obtained with the help of Mulliken population analysis increases as x is increased from 0 to 1. The solid solutions considered are all metallic with valence and conduction bands, which have a mainly Ti 3d character, crossing the Fermi level. The temperature and pressure dependences of bulk modulus, normalized volume, specific heats, thermal expansion coefficient, and Debye temperature are all obtained through the quasi-harmonic Debye model with phononic effects for T=0−1000 K and P=0−50 GPa. The obtained results are compared with other results available. Further an analysis of optical functions for two polarization vectors reveals that the reflectivity is high in the visible–ultraviolet region up to ∼10.5 eV region showing promise as a good coating material.  相似文献   

14.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

15.
This work is concerned with the dependence of the electronic energy band structures for GaAs1−xPx alloys on temperature and pressure that is based on local empirical pseudo-potential method. The band structures of GaAs1−xPx alloys were calculated in the virtual crystal approximation using the EPM which incorporates compositional disorder as an effective potential.  相似文献   

16.
Using first-principles density functional theory within the generalized gradient approximation method, the effect of Zn doping on electronic and magnetic properties of NiFe2O4 ferrite spinel has been studied. The crystal structure of the compounds is assigned to a pseudocubic structure and the lattice constant increases as the Zn concentration increases. Our spin-polarized calculations give a half-metallic state for NiFe2O4 and a normal metal state for ZnxNi1−xFe2O4 (0<x≤0.5). Based on the magnetic properties calculations, it is found that the saturation magnetic moment enhances linearly with increase in the Zn content in NiFe2O4. The Zn doping in NiFe2O4 also induces strong ferrimagnetism since it decreases the magnetic moment of A-sites.  相似文献   

17.
Oxonitridosilicate phosphors with compositions of (Y1−xCex)2Si3O3N4 (x=0−0.2) have been synthesized by solid state reaction method. The structures and photoluminescence properties have been investigated. Ce3+ ions have substituted for Y3+ ions in the lattice. The emission and excitation spectra of these phosphors show the characteristic photoluminescence spectra of Ce3+ ions. Based on the analyses of the diffuse reflection spectra and the PL spectra, a systematic energy diagram of Ce3+ ion in the forbidden band of sample with x=0.02 is given. The best doping Ce content in these phosphors is ∼2 mol%. The quenching temperature is ∼405 K for the 2 mol% Ce content sample. The luminescence decay properties were investigated. The primary studies indicate that these phosphors are potential candidates for application in three-phosphor-converted white LEDs.  相似文献   

18.
The perovskite solid solutions of the type La2xSr2−2xCo2xRu2−2xO6 with 0.25≤x≤0.75 have been investigated for their structural, magnetic and transport properties. All the compounds crystallize in double perovskite structure. The magnetization measurements indicate a complex magnetic ground state with strong competition between ferromagnetic and antiferromagnetic interactions. Resistivity of the compounds is in confirmation with hopping conduction behaviour though differences are noted especially for x=0.4 and 0.6. Most importantly, low field (50 Oe) magnetization measurements display negative magnetization during the zero field cooled cycle. X-ray photoelectron spectroscopy measurements indicate the presence of Co2+/Co3+ and Ru4+/Ru5+ redox couples in all compositions except x=0.5. Presence of magnetic ions like Ru4+ and Co3+ gives rise to additional ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the observed negative magnetization.  相似文献   

19.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

20.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号