首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dense composites were prepared through incorporating the dispersed Ni0.8Zn0.2Fe2O4 ferromagnetic particles into Sr0.5Ba0.5Nb2O6 ferroelectric matrix. Extrinsic dielectric relaxation and associated high permittivities of the materials are reported in the composites. We used an ideal equivalent circuit to explain electrical responses in impedance formalism. A Debye-like relaxation in the permittivity formalism was also found. Interestingly, real permittivity (ε′) of the sample containing 30% Ni0.8Zn0.2Fe2O4 shows obvious independence of the temperature at 100 kHz. Dielectric relaxation and high-ε′ properties of the composites are explained in terms of the Maxwell-Wagner (MW) polarization model.  相似文献   

2.
The sintering behavior, microstructures, and microwave dielectric properties of Ca2Zn4Ti15O36 ceramics with B2O3 addition were investigated. The crystalline phases and microstructures of Ca2Zn4Ti15O36 ceramics with 0-10 wt% B2O3 addition were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The sintering temperature of Ca2Zn4Ti15O36 ceramic was lowered from 1170 to 930 °C by 10 wt% B2O3 addition. Ca2Zn4Ti15O36 ceramics with 8 wt% B2O3 addition sintered at 990 °C for 2 h exhibited good microwave dielectric properties, i.e., a quality factor (Qf) 11,400 GHz, a relative dielectric constant (εr) 41.5, and a temperature coefficient of resonant frequency (τf) 94.4 ppm/°C.  相似文献   

3.
Polycrystalline BaCo1/2W1/2O3 (BCW) is prepared by the solid-state reaction technique. The X-ray diffraction study of the compound at room temperature reveals the monoclinic phase. The field dependence of the dielectric constant and the conductivity are measured in the frequency range from 50 Hz to1 MHz and in the temperature range from 300 to 413 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency is performed. The frequency-dependent maxima in the imaginary impedance are found to obey an Arrhenius law with an activation energy=0.86 eV. The frequency-dependent electrical data are also analysed in the framework of the conductivity and modulus formalisms.  相似文献   

4.
We have studied physical properties and crystal structures for oxygen-deficient phases of the cubic ordered-perovskite cuprate, Sr2Cu(Re0.69Ca0.31)Oy (y=6.0−5.4). It was found that the magnetic state undergoes phase transition from ferrimagnetic long-range order for y?5.9 to paramagnetism for y?5.7 via re-entrant-type spin-glass randomness in the narrow composition range around y∼5.8, as the oxygen content y decreases. The electrical resistivity becomes insulated, and the lattice constant expands simultaneously with decrease in y. The abrupt suppression of the ferrimagnetic state was observed in the oxygen-deficiency phase around 5.9?y?5.7. This is presumably attributed to microscopic phase separation accompanied by the partial cut-off of the Cu–O–Cu antiferromagnetic correlation path, which is caused by cation disorder and reduction of the oxidation state of the cations.  相似文献   

5.
The conductivity and dielectric permittivity spectra of single-crystalline La1.87Sr0.13CuO4 are directly measured with the electric field polarized perpendicular to the CuO planes (Ec) covering the frequency range 10-40 cm−1 and temperatures 5-300 K. We observe in the superconducting state a well pronounced excitation with strongly temperature dependent parameters. We suggest that the excitation is caused by the transverse Josephson plasma mode that appears due to the different strengths of Josephson coupling between the superconducting charge stripes in the neighboring and next-nearest neighboring copper-oxygen planes of La1.87Sr0.13CuO4. A strongly enhanced low-frequency (below 15 cm−1) absorption is seen in the superconducting state that is assigned to delocalized quasiparticles of as yet unknown origin.  相似文献   

6.
In this paper Mössbauer, Raman and dielectric spectroscopy studies of BiFeO3 (BFO) ceramic matrix with 3 or 10 wt% of Bi2O3 or PbO added, obtained through a new procedure based on the solid-state method, are presented. Mössbauer spectroscopy shows the presence of a single magnetically ordered phase with a hyperfine magnetic field of 50 T. Raman spectra of BFO over the frequency range of 100-900 cm−1 have been investigated, at room temperature, under the excitation of 632.8 nm wavelength in order to evaluate the effect of additives on the structure of the ceramic matrix. Detailed studies of the dielectric properties of BiFeO3 ceramic matrix like capacitance (C), dielectric permittivity (ε) and dielectric loss (tan δ), were investigated in a wide frequency range (1 Hz-1 MHz), and in a temperature range (303-373 K). The complex impedance spectroscopy (CIS) technique, showed that these properties are strongly dependent on frequency, temperature and on the added level of impurity. The temperature coefficient of capacitance (TCC) of the samples was also evaluated. The study of the imaginary impedance (−Z″) and imaginary electric modulus (M″) as functions of frequency and temperature leads to the measurement of the activation energy (Eac), which is directly linked to the relaxation process associated with the interfacial polarization effect in these samples.  相似文献   

7.
Magnetoelectric composites of NiFe2O4 and Ba0.8Sr0.2TiO3 were prepared using conventional double-sintering ceramic method. The phase formation of magnetoelectric composites was confirmed by XRD technique. Variation of dielectric constant and loss tangent at room temperature with frequency in the range 100 Hz-1 MHz has been studied. Also the variation of dielectric constant and loss tangent with temperature and composition at fixed frequencies of 1 kHz, 10 kHz, 100 kHz and 1 MHz is reported. The static value of the magnetoelectric conversion factor was measured as a function of intensity of the magnetic field. The ME voltage coefficient of about 430 μV/cm Oe was observed for 15% NiFe2O4+85% Ba0.8Sr0.2TiO3 composite. All the samples show linear variation of magnetoelectric conversion in the presence of static magnetic field.  相似文献   

8.
Bi1.5Zn1.0Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 tunable multilayer thin film has been fabricated by pulsed laser ablation and characterized. Phase composition and microstructure of multilayer films were characterized by X-ray diffraction, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The film has very smooth surface with RMS roughness of 1.5-2 nm and grain size of 100-150 nm. Total film thickness has been measure to be 375 nm. The BZN thin films at 300 K, on Pt(1 1 1)/SiO2/Si substrate showed zero-field dielectric constant of 105 and dielectric loss tangent of 0.002 at frequency of 0.1 MHz. Thin films annealed at 700 °C shows the dielectric tunability of 18% with biasing field 500 kV/cm at 0.1 MHz. The multilayer thin film shows nonferroelectric behavior at room temperature. The good physical and electrical properties of multilayer thin films make them promising candidate for tunable microwave device applications.  相似文献   

9.
10.
We examine the ferroelectric-relaxor behavior of (Ba0.65Sr0.35)(Zr0.35Ti0.65)O3 (BSZT) ceramics in the temperature range from 80 to 380 K. A broad dielectric maximum, which shifts to higher temperature with increasing frequency, signifies the relaxor-type behavior of these ceramics. The value of the relaxation parameter γ∼2 estimated from the linear fit of the modified Curie-Weiss law, indicates the relaxor nature of the BSZT ceramics. The dielectric relaxation rate follows the Vogel-Fulcher relation with TVF=107 K, Ea=0.121 eV, and ν0=6.83×1014 Hz, further supports such relaxor nature. The slim P-E hysteresis loop and ‘butterfly’ shape dc bias field dependence of permittivity at T>Tm (Tm, the temperature of permittivity maximum) clearly signifies the occurrence of nanopolar clusters, which is the typical characteristic of ferroelectric relaxor. At 300 K and 10 kHz, the dielectric constant and loss tan δ are ∼1100 and 0.0015, respectively. The high tunability (∼25%) and figure of merit (∼130) at room temperature show that the BSZT ceramics could be a promising candidate for tunable capacitor applications.  相似文献   

11.
Dielectric permittivities (ε′,ε″) have been measured as functions of temperature (140-535 K) and frequency (500 Hz-2.0 MHz) in a (001)-cut Pb(In1/2Nb1/2)0.7Ti0.3O3 (PINT30%) single crystal grown by the modified Bridgman method with Pb(Mg1/3Nb2/3)0.71Ti0.29O3 (PMNT29%) seed crystal. A diffused phase transition was observed in the temperature region of ∼430-460 K with strong frequency dispersion. Above the Burns temperature TB≅510 K, the dielectric permittivity was found to follow the Curie-Weiss behavior, ε′=C/(TTC), with parameters C=3.9×105 and TC=472 K. Below TB≅510 K, polar nanoclusters are considered to appear and are responsible for the diffused dielectric anomaly. Optical transmission, refractive indices, and the Cauchy equations were obtained as a function of wavelength at room temperature. The unpoled crystal shows almost no birefringence, indicating that the average structural symmetry is optically isotropic. The crystal exhibits a broad transparency in the wavelength range of ∼0.4-6.0 μm.  相似文献   

12.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

13.
In this work carbonyl iron/La0.6Sr0.4MnO3 composites were prepared to develop super-thin microwave absorbing materials. The complex permittivity, permeability and microwave absorption properties are investigated in the frequency range of 8-12 GHz. An optimal reflection loss of −12.4 dB is reached at 10.5 GHz with a matching thickness of 0.8 mm. The thickness of carbonyl iron/La0.6Sr0.4MnO3 absorber is thinner, compared with conventional carbonyl iron powders with the same absorption properties. The bandwidth with a reflection loss exceeding −7.4 dB is obtained in the whole measured frequency range with the thickness of 0.8 mm. The excellent microwave absorption properties are attributed to a better electromagnetic matching established by the combination of the enhanced dielectric loss and nearly invariable magnetic loss with the addition of La0.6Sr0.4MnO3 nanoparticles in the composites. Our work indicates that carbonyl iron/La0.6Sr0.4MnO3 composites may have an important application in wide-band and super-thin electromagnetic absorbers in the frequency range of 8−12 GHz.  相似文献   

14.
(Ca1 − x, Srx)Al2Si2O8:0.06Ce3+, M+ (M+ = Li+, Na+, K+) phosphors have been prepared by conventional solid-state reaction method. The structural and optical properties of the phosphors were characterized by X-ray diffraction (XRD) technique and spectrophotometer, respectively. A regular variation was found among the XRD patterns of (Ca1 − x, Srx)Al2Si2O8:0.06Ce3+ phosphors based on the changing of Sr content. With the increase of Sr content, the maximum of emission band presented slight blue shifts (~ 15 nm). The luminescence intensity of CaAl2Si2O8:0.06Ce3+ and SrAl2Si2O8:0.06Ce3+ were significantly enhanced when K+ and Li+ were incorporated, respectively.  相似文献   

15.
Ba0.2Sr0.8Co0.8Fe0.2O3-δ (BSCFO) ceramic oxide has been synthesized by combined citrate-EDTA complexing method and studied with regard to their structural, magnetic and dielectric properties. It is shown that the compound exhibits perovskite-type cubic structure. It depicts hysteresis loop in presence of magnetic field—indicating its magnetic nature. The dielectric properties of sintered oxide were investigated in temperature range (373-873 K) and frequency (100 kHz-1 MHz).The ferroelectric and ferrimagnetic transition temperatures were found to be around 700 K.  相似文献   

16.
We present the results of impedance spectroscopic study with its analytical interpretations in the framework of electric modulus formalism for Barium Nickel Tantalate Ba(Ni1/3Ta2/3)O3 (BNT), Calcium Nickel Tantalate Ca(Ni1/3Ta2/3)O3 (CNT) and Strontium Nickel Tantalate Sr(Ni1/3Ta2/3)O3 (SNT) synthesized by the solid-state reaction technique. The results of powder X-ray diffraction study reveal that BNT and SNT crystallize in cubic structure with lattice parameter a=4.07 Å and 3.98 Å respectively, whereas CNT crystallizes in monoclinic structure having lattice parameters, a=5.71 Å, b=13.45 Å and c=5.47 Å with β=118.3°. The logarithmic angular frequency dependence of the real part of complex dielectric permittivity and loss tangent as a function of temperature indicate significant dielectric relaxation in the samples, which have been explained by the Debye theory. The frequency dependence of the loss peak and the imaginary part of electrical modulus are found to obey the Arrhenius law. The relaxation mechanism of these samples is modeled by the Cole–Cole equation. This confirms that the polarization mechanism in BNT, CNT and SNT is due to the bulk effect arising in semiconductive grains. The scaling behavior of imaginary part of electric modulus M″ suggests that the relaxation describes the same mechanism at various temperatures but relaxation frequency is strongly temperature dependent. The normalized peak positions of tan δ/tan δm and M″/Mm versus log ω for BNT, CNT and SNT do not overlap completely and are very close to each other. These indicate the presence of both long-range and localized relaxation. Due to their high dielectric constant and low loss tangent, these materials may find several technological applications such as in capacitors, resonators, filters and integrated circuits.  相似文献   

17.
Co0.5Zn0.5Fe2O4 nanoparticles were prepared using mechanical alloying (MA) and sintering. The crystallite size, coercivity, retentivity and saturation magnetization were also measured. The frequency dependence of dielectric and the magnetic parameters, namely, real permittivity ε′, loss tanget tan δ, real permeability μ′ and loss factor μ″ were measured at room temperature for samples sintered from 600 to 1000 °C, in the frequency range 10 MHz to 1.0 GHz. The results show that the crystallite size of the resulting products ranges between 16 and 67 nm for as-milled sample and the sample sintered at 1000 °C, respectively. The sample sintered at 1000 °C, measured at room temperature exhibited a saturation magnetization of 37 emu g−1. The values of permittivity remain constant within the measured frequency, but vary with sintering temperature. The permeability values, on the other hand however vary with both the sintering temperature and the frequency, thus, the absolute value of the permeability decreased after the natural resonance frequency.  相似文献   

18.
The relaxor ferroelectric lead iron tantalate, Pb(Fe0.5Ta0.5)O3 (PFT) is synthesized by Coulombite precursor method. The X-ray diffraction pattern of the sample at room temperature shows a cubic phase. The field dependence of dielectric response is measured in a frequency range 0.1 kHz — 1 MHz and in a temperature range from 173–373 K. The temperature dependence of permittivity (ɛ′) shows broad maxima at various frequencies. The frequency dependence of the permittivity maximum temperature (T m ) has been modelled using Vogel-Fulcher relation.   相似文献   

19.
The mixed spinel-perovskite composites of xMnFe2O4-(1-x)BiFeO3 with x=0, 0.1, 0.2, 0.3 and 0.4 were prepared by solid state reaction method. The structure and grain size were examined by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD results showed that the composites consisted of spinel MnFe2O4 and perovskite BiFeO3 phases after being calcined at the temperature 950 °C for 2 h. The grain size ranged from 0.8 to 1 μm. Magnetization was found to increase with increasing concentration of ferrite content. The variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Magnetocapacitance was also observed in the prepared composites, which may be the sign of magnetoelectric coupling in the synthesized composites at room temperature.  相似文献   

20.
Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号