首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cu2+-doped ZnO nanopowders, synthesized at room temperature by mild and simple solution method, are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), optical, electron paramagnetic resonance (EPR) and Fourier-transform infrared (FT-IR) techniques. From XRD and SEM, the crystal structure is identified as hexagonal, and the average crystallite size is around 53 nm. Lattice cell parameters are evaluated. The optical and EPR spectral investigations suggest that the Cu2+ ion enters the host lattice in two tetragonally distorted octahedral sites. Crystal field, tetragonal field, spin Hamiltonian and bonding parameters are estimated.  相似文献   

2.
An electron paramagnetic resonance (EPR) study of Fe3+-doped diammonium hexaaqua magnesium sulphate single crystal is carried out at liquid nitrogen temperature. EPR spectrum shows two sites. The spin-Hamiltonian parameters are evaluated from angular variation of observed hyperfine lines. Fe3+ ion enters the host lattice substitutionally at site I, replacing Mg2+, whereas it enters interstitially at site II. The local site symmetry of Fe3+ ion within the host lattice is orthorhombic. An optical absorption study is performed at room temperature. Using the optical absorption spectrum the bands are assigned and the Racah parameters (B and C) and cubic crystal field splitting parameter Dq are determined. The nature of metal–ligand bonding in the crystal is determined using EPR and optical data. Crystal field parameters and zero-field splitting parameters (ZFSPs) are evaluated theoretically for both the sites using superposition model and microscopic spin Hamiltonian together with perturbation equations, respectively. The theoretically evaluated ZFSPs are in good agreement with the experimental values.  相似文献   

3.
In this study, the spin-Hamiltonian parameters (g and A), molecular orbital coefficients, and other spectroscopic properties of vanadyl-doped sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O) powders have been investigated by experimental and theoretical methods, including electron paramagnetic resonance (EPR) and optical absorption spectroscopies. The results show axially symmetric crystalline field around VO2+ ion. The optical absorption spectra exhibit three characteristic bands of VO2+ ions in tetragonal symmetry. EPR and optical data were used in a complementary way to calculate spin-Hamiltonian parameters and molecular orbital coefficients. The octahedral and the tetragonal field parameters were theoretically calculated on the basis of crystal field theory. These parameters were used to determine various bonding parameters which characterize the nature of bonding in the complex. The theoretical results are supported by experimental results.  相似文献   

4.
The spin-Hamiltonian (or EPR) parameters of tetragonal Cu2+ octahedral centers in ZnCdO nanopowders are calculated from the high-order perturbation formulas based on the cluster approach. In these formulas, the contributions to spin-Hamiltonian parameters due to the admixture between the d orbitals of dn ion and the p orbitals of ligand ions via covalence effect are considered. The crystal field parameters are calculated from the superposition model and so the optical absorption bands (related to the crystal field energy levels) and local structure of Cu2+ octahedral centers in ZnCdO nanopowder are also studied. The calculated spin-Hamiltonian parameters and optical absorption bands are in reasonable agreement with the experimental values. The tetragonal elongation ΔR (=R//R) of Cu2+ octahedron in ZnCdO nanopowder due to Jahn–Teller effect is acquired from the calculations. The results are discussed.  相似文献   

5.
CaF2 crystals doped with Yb3+ ions have been studied by electron paramagnetic resonance (EPR) and optical spectroscopy. EPR spectra of paramagnetic centers (PCs) for cubic (Tc) and tetragonal (Ttet) symmetries were identified. Empirical energy level diagrams were established and crystal field parameters were determined. Information on the CaF2∶Yb3+ phonon spectra was obtained from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyze the crystal lattice distortions in the vicinity of the Yb3+ ion. Within the framework of a superposition model, it is established that four F ions located symmetrically with respect to the fourfold axis from the side of the ion-compensator approach the impurity ion and deviate from the PC axis. The second set of four fluorine ions also approaches the Yb3+ ion and the PC axis. The ion-compensator F also approaches considerably the impurity ion.  相似文献   

6.
EPR study of Cr3+-doped tetramethyl cadmium chloride (TMCC) single crystals is carried out at room temperature. The crystal field and spin-Hamiltonian parameters are evaluated from the resonance line positions of different lines observed in the EPR spectra. The g and D parameter values are found to be g=1.9741±0.0002 and D=553±2×10−4 cm−1, respectively. EPR data indicate that the site symmetry of Cr3+ ion in the crystal is distorted octahedron. Cr3+ ions enter the lattice substitutionally replacing Cd2+ sites and bind to the neighboring extra Cd vacancies necessary for charge compensation. The optical absorption spectra are measured in 195–925 nm wavelength range at room temperature. From optical study the energy values of different orbital levels are estimated. Further, the bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed. The values of Racah parameters (B and C), crystal field parameter (Dq) and nephelauxetic parameters (h and k) are obtained to be B=722, C=2845, Dq=2043 cm−1, h=1.015 and k=0.21.  相似文献   

7.
Electron paramagnetic resonance (EPR) of Ho3+ single ions and Ho3+?Mg2+-vacancy-Ho3+ associates in holmium-doped forsterite single crystals are studied at 9.4, 37.3 and 65–250 GHz. Crystals were grown from melt by the Czochralski technique in slightly oxidizing atmosphere. For both centers, directions of the principal magnetic axes and parameters of the effective spin Hamiltonians describing dependences of electron-nuclear levels on applied magnetic field are obtained. For Ho3+ substituting Mg2+ in the M2 site as the single ion and for Ho3+ ions in dimer centers, values of crystal field parameters related to a real crystal lattice structure are estimated in the framework of the exchange charge model. The calculated crystal field energies, values of theg-factors of the ground Ho3+ quasi-doublet and the directions of the corresponding magnetic moments agree satisfactorily with the data obtained from measurements of EPR and optical absorption and site-selective luminescence spectra.  相似文献   

8.
The EPR spectra of Cu2+ in Sodium hydrogen oxalate monohydrate, NaHC2O4.H2O(SHOMH hereafter) single crystal was studied at room temperature. The angular variation of EPR spectra showed that the Cu2+ ion in SHOMH single crystal substitutes with Na+ monovalent cation together with a monovalent vacancy to compensate oxygen in the crystal. Since the crystal symmetry is triclinic, only one site is observed in the EPR spectra in three perpendicular axis. The spin Hamiltonian parameters were obtained, and the ground state wave function of Cu2+ ion in the lattice was constructed.  相似文献   

9.
Single-crystal electron paramagnetic resonance (EPR) studies at X-band have been done on Cu2+-doped potassium hexaaquazinc (II) sulphate (PHZS) at room temperature. The spin Hamiltonian parameters g, A and their direction cosines are evaluated using standard diagonalization procedure with the help of a computer program. The EPR spectrum is simulated using EasySpin program to justify the calculations. The ground-state wave function of the Cu2+ ion in this lattice is also determined, which is predominantly |x 2 − y 2〉. The optical absorption spectrum of Cu2+ ions doped in PHZS single crystal at room temperature is also recorded and four main dd transition bands in visible region are assigned. With the help of assigned bands, the crystal-field parameters (Dq, Ds and Dt) are evaluated. Finally, with the optical and EPR data, the nature of bonding in the complex is discussed.  相似文献   

10.
ESR spectra of Cu2+ in LiKSO4 have been studied at different temperatures. The measured g-values suggest a rhombic field for Cu2+ ion in the lattice. Optical absorption spectra of the crystal have been studied at room and liquid nitrogen temperatures. From the nature and position of the observed bands, they have been attributed to Cu2+ ions in D2h symmetry. The orbital reduction parameters obtained indicate a substantial degree of covalency in the bonding of the copper ion.  相似文献   

11.
Zero-field splitting (ZFS) parameters D and E for Mn2+ centers in ammonium tartrate single crystal are calculated with perturbation formulae using the superposition model. The theoretically calculated ZFS parameters for Mn2+ at site I and site II of ammonium ion are compared with the experimental values obtained by electron paramagnetic resonance (EPR) at room temperature. The superposition model gives the ZFS parameters similar to those from experiment. The energy band positions of optical absorption spectrum of Mn2+in ammonium tartrate are calculated using the CFA package and crystal field parameters from superposition model. These are in good agreement with experimental energy band positions.  相似文献   

12.
EPR spectra of Cr3+ ions doped in potassium sodium dl-tartrate tetrahydrate single crystals are recorded at 77 K. The spin Hamiltonian and zero field parameters g, |D| and |E| are measured from the resonance lines obtained at various rotations of the magnetic field. The values obtained are: gx=1.9257±0.0002, gy=1.9720±0.0002, gz=2.0102±0.0002, |D|=313±2 (×10−4) cm−1 and |E|=101±2 (×10−4) cm−1. From the results of EPR study, the site symmetry of Cr3+ ion in the crystal is discussed. The optical absorption at room temperature is also studied. From the observed band positions, the crystal field splitting parameter (Dq) and the Racah inter-electronic repulsion parameters (B and C) are evaluated. The bonding parameters are obtained by correlating optical and EPR data and the nature of bonding in the crystal is discussed.  相似文献   

13.
A single-crystal TlGaSe2 doped by paramagnetic Fe ions has been studied at room temperature by electron paramagnetic resonance (EPR) technique. The fine structure of EPR spectra of paramagnetic Fe3+ ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet (S=5/2, L=0) of Fe3+ ion, which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe3+ centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe3+ site and CF parameters were determined. Experimental results indicate that the Fe ions substitute Ga at the center of GaSe4 tetrahedrons, and the rhombic distortion of the CF is caused by the Tl ions located in the trigonal cavities between the tetrahedral complexes.  相似文献   

14.
Crystal structure of [Zn(hydet-en)2]·C4O4·H2O (ZHES) (hydet-en is N-(2-hydroxyethyl)ethylenediamine) complex has been synthesized and characterized by analytical, spectroscopic (IR, UV/Vis) and voltammetric techniques. After doping Cu2+ ion, its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystalizes in monoclinic system with space group P21/c and with Z=4. Each hydet-en ligand acts as a tridentate ligand through the two N atoms and the hydroxyl O atom, resulting in a six coordinate Zn(II) ion. The EPR spectra were recorded in three perpendicular planes of Cu2+ doped ZHES single crystal. The calculated g and A values indicated that the paramagnetic center is rhombic symmetry with the Cu2+ ion having distorted octahedral environment. The molecular orbital bond coefficients of the Cu(II) ion in d9 state is also calculated by using EPR and optical absorption parameters. The dianion SQ2− is oxidized reversibly in two consecutive steps to the corresponding radical monoanion and neutral form.  相似文献   

15.
Electron paramagnetic resonance (EPR) studies of VO2+ impurity ion in single crystals of diammonium hexaaqua magnesium(II) sulfate are carried out at 9.5 GHz (X-band) at room temperature. Different spin-Hamiltonian parameters are determined. VO2+ is expected to enter the lattice substitutionally. Superhyperfine splitting is also observed. An EPR study of a powder sample is done that supports the data obtained from single crystal studies. Optical absorption studies are also performed at room temperature. The crystal field parameter (Dq), tetragonal parameters (Ds and Dt), and various bonding parameters are evaluated to estimate the covalency and nature of bonding of VO2+ with its different ligands.  相似文献   

16.
The electron paramagnetic resonance (EPR) and dielectric properties of Pb5Ge3O11 crystals activated by copper ion are investigated. It is shown that Cu2+ ions replace Pb2+ in trigonal symmetry positions and occupy three off-center positions displaced from a crystal lattice site in a plane perpendicular to the polar axis C. The temperature variation of EPR spectra and dielectric properties indicates the presence of thermally activated jumps of Cu2+ ions between off-center positions. The EPR and dielectric data are used to determine the activation energy W=0.24 eV and the eigenfrequency τ 0 ?1 ~ 1012 Hz of local dynamics of Cu2+ ions.  相似文献   

17.
Seven crystal field energy levels (obtained from the optical spectra) and three g factors gx, gy and gz (obtained from electron paramagnetic resonance (EPR) spectra) for Ce3+ ion in Y3Ga5O12 crystal are calculated together by diagonalizing a complete energy matrix. The Hamiltonian of this energy matrix includes all the interactions for 4f1 ion Ce3+ in rhombic crystal field and under an external magnetic field, and so the optical and EPR data can be studied in a unified way. The calculated crystal field energy levels are in better agreement with the experimental values than the calculated values in the previous paper, and the g factors (which have not been calculated previously) are explained reasonably. The results are discussed.  相似文献   

18.
X-band electron paramagnetic resonance (EPR) study of Cr3+-doped dipotassium tetrachloropalladate single crystal is done at liquid nitrogen temperature. EPR spectrum shows two sites. The spin-Hamiltonian parameters have been evaluated by employing hyperfine resonance lines observed in EPR spectra for different orientations of crystal in externally applied magnetic field. The values of spin-Hamiltonian and zero-field splitting (ZFS) parameters of Cr3+ ion-doped DTP for site I are: g x  = 2.096 ± 0.002, g y  = 2.167 ± 0.002, g z  = 2.220 ± 0.002, D = (89 ± 2) × 10?4 cm?1, E = (16 ± 2) × 10?4 cm?1. EPR study indicates that Cr3+ ion enters the host lattice substitutionally replacing K+ ion and local site symmetry reduces to orthorhombic. Optical absorption spectra are recorded at room temperature. From the optical absorption study, the Racah parameters (B = 521 cm?1, C = 2,861 cm?1), cubic crystal field splitting parameter (Dq = 1,851 cm?1) and nephelauxetic parameters (h = 2.06, k = 0.21) are determined. These parameters together with EPR data are used to discuss the nature of bonding in the crystal.  相似文献   

19.
《Physica B: Condensed Matter》2009,404(20):3694-3697
Electron paramagnetic resonance (EPR) of VO2+ doped potassium hydrogen d-gluconate single crystals and powder have been examined at room temperature. Single crystal rotations in each of the three mutually orthogonal crystalline planes namely ac, ba and ca indicate two different VO2+ complexes. Each complex is located in different chemical environments, each environment containing two magnetically inequivalent VO2+ sites in distinct orientations occupying substitutional positions in the lattice and showing a very large angular dependence. The powder spectrum also clearly indicates four different VO2+ complexes, confirming the single crystal analysis. Crystalline field around the VO2+ ion is nearly axial. The optical absorption spectrum of VO2+ ions in the crystal lattice is also studied at room temperature. The characteristic spectrum of the VO2+ ions has two absorption bonds. The bond positions are at 17 857 and 11 235 cm-1. Spin Hamiltonian parameters and molecular orbital coefficients are calculated from the EPR and the optical data, and results are discussed.  相似文献   

20.
Electron paramagnetic resonance (EPR) study of Cu2+ ions doped in diammonium hexaaqua magnesium sulphate single crystal over the temperature range of 4.2–320 K is reported. Copper enters the lattice substitutionally and is trapped at two magnetically equivalent sites. The spin Hamiltonian parameters are evaluated at 320, 300, 77, and 4.2 K. The angular variations of the resonance lines in three mutually perpendicular planes ab, bc* and c*a are used to determine principal g and A values. The observed spectra are fitted to a spin Hamiltonian of rhombic symmetry with parameters of Cu2+ at 77 and 4.2 K: g xx  = 2.089, g yy  = 2.112, g zz  = 2.437 (±0.002) and A xx  = 38, A yy  = 14, A zz  = 110 (±2) × 10?4 cm?1. The ground state wave function of Cu2+ ion in this lattice is determined. The g-factor anisotropy is calculated and compared with the experimental value. The optical absorption spectra of the crystal are also recorded at room temperature. With the help of assigned bands the crystal-field parameters (Dq, Ds and Dt) are evaluated. By correlating the optical and EPR data, the nature of bonding in the complex is discussed. The temperature dependence of the g values is explained to conclude the occurrence of both static and dynamic Jahn–Teller effects over the temperature range of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号