首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new non-linear optical material, glycine lithium chloride, was synthesized and single crystals were grown by slow evaporation solution growth technique at constant temperature from its aqueous solution. Transparent and well-crystallized hexagonal prisms were obtained by controlled evaporation at a constant temperature of 45 °C. The grown crystals were characterized by X-ray diffraction methods, Fourier transforms infrared spectroscopy, and optical absorption spectrum. Single crystal X-ray diffraction analysis revealed that the crystal lattice of glycine lithium chloride is hexagonal with unit cell a = b = 7.023 Å, c = 5.478 Å, α = β = 90°, γ = 120°, V = 234 Å3. The dielectric response of the crystal with varying frequencies was studied. The second harmonic generation efficiency of the crystal was studied and is found to be larger than KDP.  相似文献   

2.
Urea-succinic acid crystals have been grown at room temperature from aqueous solution in the presence of maleic acid by a slow evaporation technique. The structural parameters were determined using powder X-ray diffraction (XRD) and found to have monoclinic symmetry (space group P21/m) with a=9.902, b=17.510, c=5.555 Å and α=γ=90°, β=96.46°. The transparency and optical analysis were carried out using UV-vis analysis. The optical band gap is found to be 4.71 eV. The presence of various functional groups was confirmed by FTIR analysis. The samples have shown piezoelectric behavior with a fairly good piezoelectric charge coefficient (d33) of 5 pC/N, when it is poled at 7 kV/cm. The hysteresis loop was plotted and the remnant polarization and coercive field were found to be 2.8 μC/cm2 and 4 kV/cm, respectively. The dielectric analysis was carried out as a function of temperature at various frequencies and the results were also discussed.  相似文献   

3.
A new organic nonlinear optical material 1-(4-fluorostyryl)-4-nitrostilbene (FNS) has been synthesized and single crystals of FNS were grown using solvent evaporation solution growth technique (SESGT) by 2-butanon solvent. Single crystal x-ray diffraction analysis reveals the unit cell parameters of the grown crystal are a = 9.494(4) Å, b = 9.864(2) Å, c = 19.501(7) Å and it belongs to monoclinic system with noncentrosymmetric space group. Optical transmittance of the grown crystal has been studied by UV-Vis-NIR spectrum. The optical properties of FNS have been studied by means of optical transmittance measurements in the wavelength range of 190–1100 nm The optical constants were calculated from the optical transmittance (T) data such as refractive index (n), extinction coefficient (k) and reflectance (R). The optical band gap (Eg) of FNS is 3.27 eV with direct transition. The complex dielectric (?) constant of the grown FNS crystal was determined. The second harmonic generation (SHG) efficiency of the grown FNS crystal has been studied by using Kurtz-Perry powder technique and it shows 12 times relatively greater than KDP.  相似文献   

4.
The potential organic nonlinear optical single crystal of 2,3-dimethoxy-10-oxostrychnidinium hydrogen oxalate dihydrate has been grown by slow evaporation solution growth technique (SEST) using ethanol–water solution at room temperature. The powder X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non-centrosymmetric space group P212121 and the cell parameters are a = 7.61 Å, b = 10.73 Å, c = 29.49 Å, V = 2410.75 Å3. The functional groups of the synthesized compound have been identified by FT-Raman and FTIR analyses. Photoluminescence spectroscopy study is determined to explore its efficacy towards device fabrications. Birefringence measurement has been carried out in order to analyze the optical homogeneity of the grown crystal. The optical constants such as reflectance (R) and extinction coefficient (K) have been determined from the transmittance data. The relative second harmonic efficiency of the compound is found to be 4 times greater than that of KDP. DTA-DSC measurements indicate that the crystal is thermally stable up to 174 °C.  相似文献   

5.
l-alanine 2-furoic acid (LA2FA), a novel organic third order nonlinear optical material was grown by slow solvent evaporation technique at room temperature. The grown single crystals were characterized by XRD, spectral, thermal, optical, dielectric and third order nonlinear properties. LA2FA crystallizes into triclinic system with the space group P1. The cell parameters are found to be a = 3.97 Å, b = 7.09 Å, c = 10.69 Å, α = 73.61°, β = 83.57°, γ = 84.21° and V = 286 Å3. The modes of vibrations of different molecular groups present in LA2FA were identified by FTIR studies. The optical transparency of the grown crystals was investigated by UV–visible spectrum. The absorption spectrum reveals that the crystal has a high UV cut off of 245 nm and photonic band gap of 2.5 eV. The scanning electron microscope (SEM) study has been carried out to determine the surface morphology of the grown crystal. The thermal behavior of the crystal investigated using thermo gravimetric (TG) and differential thermal analysis (DTA) indicates that the material does not decompose before melting. The third order NLO property was studied in detail by z-scan technique.  相似文献   

6.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

7.
The present communication deals with the synthesis, single crystal growth and characterization of a new nonlinear optical material l-proline strontium chloride monohydrate (l-PSCM). Single crystals have been grown using the slow solvent evaporation technique. Single crystal XRD analysis confirmed that the crystal belongs to the orthorhombic structure with lattice parameter a=6.6966(3) Å, b=12.4530(5) Å, c=15.2432(5) Å and space group P212121. Presence of various functional groups in l-PSCM and protonation of the ions were confirmed by Fourier transform infrared spectroscopy (FT-IR) analysis. The melting point of the single crystal was found to be 126 °C using DSC. Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 226 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 5.82 eV. Capacitance and dielectric-loss measurements were carried out at different temperatures in the frequency range 1 kHz-2 MHz. The dielectric constant and loss factor were found to be 21 and 0.03 at 1 kHz at room temperature, respectively. Microhardness mechanical studies show that hardness number (Hv) increases with load for l-PSCM single crystals the by Vickers microhardness method. Second harmonic generation (SHG) efficiency was found to be 0.078 times the value of KDP.  相似文献   

8.
Two novel complexes of Sm(III) and Dy(III) with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands were synthesized and their structure and luminescence properties were characterized. The complexes of [Ln(ODA)(phen)·4H2O]Cl·5H2O [Ln=Sm and Dy] crystallize in the monoclinic space group P21/n with Sm: a=12.3401(14) Å, b=16.821(2), c=12.6847(11) Å, β=107.939(10)°, V=2505.0(5) Å3, Z=4 and ρ=1.841 mg/m3, and with Dy: a=12.289(7) Å, b=16.805(6) Å, c=12.705(4) Å, β=108.144(18)°, V=2493.4(19) Å3, Z=4 and ρ=1.786 mg/m3. The complexes of [Sm(ODA)(phen)·4H2O]+ and [Dy(ODA)(phen)·4H2O]+ excited by UV light produce orange red and lightly white emissions, respectively, via the nonradiative energy transfer from phen to the metals. The quantum yield of the sensitized luminescence of [Dy(ODA)(phen)·4H2O]+ (Q=19%) is much greater than that of [Sm(ODA)(phen)·4H2O]+ (Q=1.4%). The luminescence decay times of the complexes were in a few microsecond range and independent of temperature.  相似文献   

9.
The influence of Al(III)/Sb(III)-doping on the properties of tris(thiourea)zinc(II) sulphate (ZTS) crystals grown by slow evaporation solution growth technique is reported. The as-grown crystals belong to orthorhombic system and cell parameters are, a = 7.77 Å, b = 11.13 Å, c = 15.47 Å, V = 1338 Å3 (Al(III)-doped) and a = 11.1996 Å, b = 7.770 Å, c = 15.5598 Å, V = 1368.3 Å3 (Sb(III)-doped). The structure and the crystallinity of the materials are further confirmed by powder X-ray diffraction analysis. The modes of vibrations of different functional groups present are identified by Fourier transform infrared studies. Thermogravimetric/differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. Surface morphological changes due to doping are observed by scanning electron microscopy. Microhardness study was carried out to elucidate the mechanistic behavior microhardness studies were carried out to elucidate the mechanistic behavior. Second harmonic generation activity is much better in the case of Sb(III)-doping. The specimen is also characterized by dielectric studies.  相似文献   

10.
The ligands 4,4,4-trifluoro-1-phenyl-1,3-butanedione (Hbfa) and 1,10-phenanthroline (phen) were used to prepare ternary lanthanide (Ln) complexes [Dy(bfa)3phen and Tm(bfa)3phen]. Crystal data: Dy(bfa)3phen C42H26F9N2O6Dy, triclinic, P1¯, a=9.9450(6) Å, b=14.0944(9) Å, c=14.6043(9) Å, α=82.104(1)°, β=87.006(1)°, γ=76.490(1)°, V=1971.1(2) Å3, Z=2; Tm(bfa)3phen C42H26F9N2O6Tm, triclinic, P1¯, a=9.898(5) Å, b=13.918(5) Å, c=14.753(5) Å, α=83.517(5)°, β=86.899(5)°, γ=76.818(5)°, V=1965.3(14) Å3, Z=2. The coordination number of the central Ln3+ (Ln=Dy, Tm) ion is eight, with six oxygen atoms from three Hbfa ligands and two nitrogen atoms from the phen ligand. The photophysical properties of the two complexes were studied by absorption spectra, diffuse reflectance spectra, and emission spectra. They show the characteristic luminescence of the corresponding Ln3+ ion in both visible and near-IR (NIR) region. Additionally, the energy transfer mechanisms between the ligands and central Ln3+ ions were discussed.  相似文献   

11.
Single crystals of organic material guanidinium phenyl arsonate (GPA) of size 28 × 14 × 10 mm3 were grown from propanol–water mixed solvent by slow solvent evaporation technique. The crystal belongs to monoclinic system with noncentrosymmetric space group Cc. The lattice parameter values of GPA crystals are a = 18.453 Å, b = 7.609 Å, c = 12.592 Å and β = 121.856°. The grown crystal was subjected to X-ray diffraction (XRD) study to identify its morphology and structure. Chemical etching study using propanol–water as etchant reveals the mechanism of growth. The formation of synthesized compound was confirmed by Fourier transform infrared (FT-IR) spectroscopy analysis. Optical transmittance and second harmonic generation (SHG) of the grown crystals were studied by UV–vis–NIR spectrum and Kurtz powder technique respectively. The transmittance of GPA has been used to calculate the refractive index ‘n’ and the extinction coefficient ‘k’. The laser induced surface damage threshold for the grown crystal was determined using Nd:YAG laser. The mechanical behavior of GPA was analyzed using Vickers microhardness test.  相似文献   

12.
Single crystals of benzophenone-2-furoyl hydrazone are grown by slow evaporation solution growth technique from ethanol at room temperature. It belongs to monoclinic system with the space group P21/c and the cell parameters are, a = 6.1631(3) Å, b = 13.1397(8) Å, c = 18.0030(11) Å and V = 1457.72(14) Å3. NMR spectral studies reveal the structure and powder XRD indicates the crystallinity of the specimen. The characteristic functional groups present in the molecule are confirmed by Fourier transform infrared spectroscopy. The crystals are transparent in the visible region having a lower optical cut-off at ∼406 nm and the band gap energies are estimated by the application of Kubelka–Munk algorithm. Thermal analysis by TG/DTA indicates the stability of the material. The scanning electron microscopy studies reveal the surface morphology of the as-grown crystal. Theoretical calculations were performed using Hartree–Fock method with 6-31G(d,p) as the basis set for to derive the optimized geometry, dipole moment and first-order molecular hyperpolarizability (β) values.  相似文献   

13.
A promising non-linear optical (NLO) crystal, aqua maleatocopper(II) (CuC4H2O4·H2O), was grown at room temperature by the controlled ionic diffusion technique. Fourier transform infrared spectrum could identify the various functional groups in the crystal. Structural analysis using single crystal XRD revealed that the compound crystallizes in the monoclinic system with space group P21 and unit cell parameters a = 7.7277(5) Å, b = 5.2967(3) Å, c = 7.7179(4) Å, α = γ = 109.170(5)°, β = 111.995(2)°. The thermal stability and decomposition pattern of the material were explored using thermogravimetry (TG) and differential thermal analysis (DTA). The optical band gap energy of the material was estimated as 2.2 eV from the diffuse reflectance spectroscopy. The Kurtz and Perry powder technique established the crystal to be an efficient non-linear optical (NLO) material.  相似文献   

14.
The equilibrium structure of silyl fluoride, SiH3F, has been reinvestigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, and inclusion of core correlation as well as relativistic corrections (r(Si-F) = 1.5911 Å, r(Si-H) = 1.4695 Å, and ∠FSiH = 108.30°). A semi-experimental equilibrium structure has been determined based on the available rotational constants for the various isotopic species of silyl fluoride (28SiH3F, 28SiD3F, 29SiH3F, 29SiD3F, 30SiH3F, 30SiD3F, 28SiH2DF, and 28SiHD2F) together with computed vibrational corrections to the rotational constants (r(Si-F) = 1.59048(6) Å, r(Si-H) = 1.46948(9) Å, and ∠FSiH = 108.304(9)°).  相似文献   

15.
Nonlinear optical (NLO) materials are useful in many of the industrial applications. New NLO chalcone derivative (2E)-3-[4-(methylsulfanyl)phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP) crystals have been grown by slow evaporation technique at ambient temperature. The grown crystals were subjected to single crystal X-ray diffraction study. The crystal has noncentrosymmetric structure in the orthorhombic system with space group Aba2 and unit cell parameters a=14.0647(15) Å, b=33.738(4) Å and c=6.0039(6) Å. To confirm the presence of various functional groups in the compound, FT-IR spectrum was recorded. The crystal was subjected to TGA/DTA analysis to find its thermal stability. The grown crystals were characterized for their optical transmission and mechanical hardness. The second harmonic generation (SHG) efficiency of the crystal is obtained by classical powdered technique using Nd:YAG laser and its value is 28.57 times that of urea. The laser damage threshold for 4N4MSP crystal was determined using Q-switched Nd:YAG laser. The refractive index values for green and red wavelengths were measured by Brewster angle technique. The dielectric and electrical measurements were carried out to study the different polarization mechanism and conductivity of the crystal. Good thermal, mechanical, transmission and SHG response make it desirable for the NLO applications.  相似文献   

16.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

17.
Single crystals of iminodiacetic acid (HN(CH2COOH)2) doped triglycine sulphate (IDATGS) crystals have been grown from aqueous solution containing 1-10 mol% of iminodiacetic acid at constant temperature by slow evaporation technique. The effects of different amounts of doping entities on the growth habit have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. The grown crystals were subjected to Fourier transform infrared (FTIR) spectroscopy studies to find the presence of various functional groups qualitatively. The dielectric permittivity has been studied as a function of temperature. An increase in the transition temperature (49.2-49.7 °C) of IDATGS crystals is observed. The dielectric constant (εmax) of IDATGS crystals vary in the range 922-2410 compared to pure TGS (Tc=49.12 °C and εmax=3050). Curie Weiss constants Cp and Cf in the paraelectric and ferroelectric phases were determined. The transition temperature (Tc) is found to decrease with increase in dopant concentration. P-E hysteresis studies show the presence of internal bias field in the crystal. Piezoelectric measurements were also carried out at room temperature. Domain patterns on b-cut plates were observed using scanning electron microscope. The micro hardness studies reveal that the doped crystals are harder than the pure TGS crystals. The low dielectric constant, higher transition temperature, internal bias field and hardness suggest that IDATGS crystals could be a potential material for IR detectors.  相似文献   

18.
A series of l-amino acids, isoleucine, valine, glutamine, methionine, arginine, cystine and aspargine are employed to form picrates with picric acid (1:1). A comparison of cell parameters reveals that expected picrates are formed only in the case of l-valine and l-isoleucine. l-Isoleucinium picrate (LIP), a new nonlinear optical material was grown from aqueous medium by the slow evaporation of equimolar mixture of l-isoleucine and picric acid. The structure of the grown crystal as determined by single crystal XRD diffraction analysis reveals that it belongs to the monoclinic system with space group P21 and the cell parameter values are, a = 9.970(3) Å; b = 6.425(2) Å; c = 12.871(4) Å; β = 109.54(3)°; V = 770.0(4) Å3; Z = 2. The presence of functional groups in the LIP is confirmed by FT-IR vibrational patterns and the good crystallinity indicated by powder X-ray diffraction method. The relative second harmonic generation (SHG) efficiency measurements reveal that the LIP is a highly efficient nonlinear optical (NLO) material having an activity 16 times as that of the reference material potassium dihydrogen phosphate. The optical transparency has been studied using UV–vis spectrophotometer and the absorption is minimum in the visible region. Thermogravimetric and differential thermal analyses reveal the purity of the sample and no decomposition is observed up to the melting point.  相似文献   

19.
The crystal structure and chemical composition of a crystal of MgCr2O4 post-spinel phase synthesized in the model system Mg3Cr2Si3O12–Mg4Si4O12 at 23 GPa and 1600 °C have been investigated. Electron microprobe analysis confirmed the MgCr2O4 stochiometry of the studied phase. The compound was found to crystallize with the orthorhombic calcium-titanate (CaTi2O4) structure type, space group Bbmm, with lattice parameters a=9.468(1), b=9.670(1), c=2.845(1) Å, V=260.5(1) Å3, and Z=4. The structure was refined to R1=0.046 using 286 independent reflections. Magnesium was found to fully occupy the eightfold-coordinated A site (with a mean bond distance of 2.289 Å) and Cr the octahedral B site (mean: 1.986 Å). The successful synthesis of MgCr2O4 with (CaTi2O4)-type structure and its structural characterization demonstrate the stability of the new post-spinel phase. The absence of MgCr2O4 compounds with spinel structure coexisting with the post-spinel phase in the investigated run is discussed.  相似文献   

20.
The large-amplitude bending motion in CsOH, a ‘classical’ molecule whose microwave spectrum was first recorded in 1967, has been studied ab initio. The three-dimensional potential energy surface has been calculated at the RCCSD(T)_DK3/[QZP + g ANO-RCC (Cs, O, H)] level of theory and employed in MORBID calculations of the rotation-vibration energies and intensities. The ground electronic state is 1Σ+ with the equilibrium structure re(Cs-O) = 2.3930 Å, re(O-H) = 0.9587 Å, and ∠e(Cs-O-H) = 180.0°. The O-H moiety is bound to Cs by an ionic bond and the molecule can be described as Csδ+(OH)δ-. Hence, the bending potential is shallow and gives rise to large-amplitude bending motion. The ro-vibrationally averaged structural parameters, determined as expectation values over MORBID wavefunctions, are 〈r(Cs-O)〉0 = 2.3987 Å, 〈r(O-H)〉0 = 0.9754 Å, and 〈∠(Cs-O-H)〉0 = 163°. Although the averaged structure in the vibrational ground state is far from being linear, the Yamada-Winnewissi-linearity parameter for CsOH is γ0≈-1.0, the value characteristic for a linear molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号