首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ba(Ti1−xFex)O3 ceramics (x=7, 30 and 70 at%) were prepared by solid-state reaction. All samples are single-phase with 6H-BaTiO3-type hexagonal perovskite structure. Mössbauer spectra show all Fe atoms to be present as Fe3+ in BaTiO3 lattice, occupying M1 octahedral and pentahedral sites. Room-temperature ferromagnetism is exhibited and saturation magnetization gradually decreases with increasing Fe content. The observed ferromagnetism is considered to be an intrinsic property of Ba(Ti1−xFex)O3, originating from super-exchange interactions between Fe3+ in different occupational sites associated with oxygen vacancies. The variation in magnetization with Fe content is related to the ratio of pentahedral to octahedral sites and oxygen vacancies.  相似文献   

2.
Fe-doped (Ba1−xSrx)TiO3 ceramics were prepared by solid-state reaction, and ferromagnetism was realized at room temperature. The microstructure and magnetism were modified by the Sr concentration control (0≤x≤75 at%) at a fixed Fe concentration, and the relevant magnetic exchange mechanism was discussed. All the samples are shown to have a single perovskite structure. When increasing the Sr concentration, the phase structure is transformed from a hexagonal perovskite into a cubic perovskite, with a monotonic decrease in lattice parameters induced by ionic size effect. The room-temperature ferromagnetism is expected to originate from the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti sites mediated by the O2− ions. The increase in Sr addition modifies two main influencing factors in magnetic properties: the ratio of pentahedral to octahedral Fe3+ and the concentration of oxygen vacancies, leading to a gradually enhanced saturation magnetization. The highest value, obtained for Fe-doped (Ba0.25Sr0.75)TiO3, is an order of magnitude higher than that of the Fe-doped BaTiO3 system with similar Fe concentration and preparation conditions, which may indicate (Ba1−xSrx)TiO3 as a more suitable matrix material for multiferroic research.  相似文献   

3.
Ba(Ti0.3Fe0.7)O3 ceramic was prepared by solid-state reaction and post-annealed in vacuum and oxygen, respectively. The as-prepared and annealed samples are all single-phase, crystallizing in a 6H-BaTiO3-type hexagonal perovskite structure. Room-temperature ferromagnetism is exhibited in all ceramics. For the as-prepared sample, the super-exchange interactions of Fe3+ in different occupational sites (pentahedral and octahedral sites) are expected to produce the ferromagnetism observed. After annealing in vacuum, the magnetization is reduced while the exchange mechanism remains unchanged. On the contrary, O2 annealing can effectively enhance the magnetization due to the presence of Fe4+, an unusual valence for iron. The simultaneous presence of Fe3+ and Fe4+ allows new exchange mechanism responsible for the ferromagnetic interaction. The exchange couplings of Fe ions with mixed valences (Fe3+ and Fe4+) determine the magnetic behavior.  相似文献   

4.
The effects of A-site cation size disorder in ABO3 type charge-ordered and antiferromagnetic Pr0.5Ca0.5MnO3 system have been studied by substituting La3+, Sr2+ or Ba2+, while keeping the valency of Mn ions and the tolerance factor (t=0.921) constant in the substituted compounds. We find that the substitutions by these larger cations induce successive sharp step-like metamagnetic transitions at 2.5 K. The critical field for metamagnetism is the lowest for 3% Ba substituted compound, which has the largest A-site cation size disorder and the least distorted MnO6 octahedra, among the compounds reported here. These cation substitutions give rise to ferromagnetic clusters within antiferromagnetic matrix, indicating phase-separation at low temperatures. The growth of the clusters is found to vary with the substitution amount. The local lattice distortion of MnO6 octahedra enhances the charge ordering temperature and reduces the magnetization at high fields (>1 T) in these manganites.  相似文献   

5.
Mg oxides doped with 1 % 57Fe were prepared by a sol-gel method, and annealed at various temperatures. Nano-size Mg oxides were characterized by Mössbauer spectrometry, magnetization and XRD measurements. The crystalline size of MgO increases with increase of annealing temperature. Samples annealed at 600 °C and 800 °C gave only doublet peaks of paramagnetic Fe3+ in Mössbauer spectra although Fe3+ doping into MgO induced a distorted structure and showed weak ferromagnetism. It is considered that the magnetic property is due to defect induced magnetism by doping Fe3+ into MgO. For a sample heated at 1000 °C, it is found from low temperature Mössbauer spectra that Fe3+ species are located at the core and shell of fine MgFe2O4 grains and diluted in MgO matrix.  相似文献   

6.
The dielectric properties of Ba(Zr0.25Ti0.75)O3+xY 2O3 ceramics are investigated. We believe that, integrating with the lattice parameters, there is an alternation of substitution preference of yttrium ions for the host cations in perovskite lattice that is responsible for the Curie point. The Tc rises with the increase of Y 3+ doping when the doping content is less than 0.05 at%, owing to the replacement of Y 3+ ions for Ba2+ ions at the A-site; when the Y 3+ content is more than 0.05 at%, Y 3+ ions tend to occupy the B-site in perovskite lattice, causing a drop of Tc. Owing to the modifications of Y 3+ doping, the loss tangent of BZT ceramics is depressed remarkably, making it a superior candidate to replace widely used lead-contained ceramics.  相似文献   

7.
《Current Applied Physics》2015,15(2):120-123
We report on the structural, magnetic and ferroelectric properties of Fe doped Ba0.95Bi0.05TiO3 (Ba0.95Bi0.05Ti1−yFeyO3 (0 ≤ y ≤ 0.1)) ceramics prepared by solid state reaction. Rietveld analysis shows that compounds with y ≤ 0.07 have a single phase-tetragonal structure (space group P4mm), and the tetragonality (c/a) decreases as x increases. Ba0.95Bi0.05Ti0.93Fe0.07O3 ceramic shows ferromagnetic order with a Curie temperature of about 700 K and ferroelectric order at room temperature. These results indicate that the Ba0.95Bi0.05Ti0.93Fe0.07O3 can be useful as a multiferroic material.  相似文献   

8.
Ba doped Bi1.04−xBaxFeO3 ceramics with x up to 0.30 have been prepared by the tartaric acid modified sol–gel method. The X ray diffraction patterns show that the structure transforms from rhombohedral to tetragonal with increasing the Ba substitution concentration from 10% to 30% and the coexistence of distorted rhombohedral and tetragonal phases in 20% Ba substituted BiFeO3, which was further confirmed by the Raman spectra. Bi0.84Ba0.20FeO3 exhibits the highest magnetization (1.6 emu/g under magnetic field of 12 kOe) compared with the other samples of different Ba substitution concentration. Significant enhancement of the ferroelectricity has been observed in 20% and 30% Ba substituted BiFeO3 with saturate polarization close to 6.6 μC/cm2 for Bi0.74Ba0.30FeO3. The magnetoelectric coupling of Bi0.84Ba0.20FeO3 has been measured and the maximum decrease of magnetization under magnetic field of 9.8 kOe was about 0.06 emu/g with increasing applied electric field to 11 kV/cm, and the magnetoelectric coefficient is 1.5×10−12 s/m.  相似文献   

9.
The magnetic and structural characterization of Ti1−xFexO2 (x=0.025, 0.05, 0.07, 0.125, and 0.15) samples prepared by mechano-synthesis using TiO2 and Fe2O3 as starting materials are reported. XANES measurements performed at the Fe K-edge show that Fe ions are in 3+ oxidation state in the 7 at% Fe-doped sample and in a mixture of 2+ and 3+ oxidation states in the other samples. EXAFS results show the incorporation of Fe ions substituting Ti ones in the rutile TiO2 structure. They also reveal a strong correlation between the number of oxygen nearest neighbours and the Fe2+ fraction, i.e the number of oxygen near neighbours decreases when the Fe2+ fraction increases. All samples present ferromagnetic-like behaviour at room temperature. We found a clear dependence between saturation magnetization and coercivity with the fraction of Fe2+ and/or the number of Fe near neighbour oxygen vacancies.  相似文献   

10.
Modification of Bi4Ti3O12 multiferroic ceramics prepared by a conventional solid state reaction method were investigated by substituting Ti partly with Fe. The introduction of Fe does not change the layered perovskite structure of Bi4Ti3O12. Upon increasing Fe content, the remnant polarization of the samples is enhanced. The magnetism of the ceramics at room temperature develops from diamagnetism to weak ferromagnetism with increasing Fe doping. The largest variations of 15% and 6% in remnant polarization and magnetization, achieved in a Bi4Ti1Fe2O12?δ sample after poling it in a magnetic field at 1 T and a DC electric field at 30 kV/cm for 10 min, are evidence of magnetoelectric coupling between the electric dipoles and magnetic dipoles at room temperature. The present results suggest a new candidate for a room temperature multiferroic material with enhanced properties.  相似文献   

11.
X-ray photoelectron spectroscopic (XPS) studies were carried out on wet-chemically synthesized cubic BaTiO3, Ba0.9Nd0.1TiO3 and BaTi0.9Fe0.1O3−δ powders. The compounds were prepared by hydrothermal and gel to crystallite conversion technique; and phases formed readily at 420 K. The phase purity of the powders was confirmed from X-ray diffractometry. Chemical state and chemical environment of the constituent elements in the compositions were examined by XPS. Ba2+ was found to exist in two different chemical environments in these titanates. The Ti 2p3/2 photoelectron peak in BaTi0.9Fe0.1O3−δ was found to be broadened after Fe3+ substitution. Any resolvable broadening was not observed distinctly in the Ti 2p peak for Ba0.9Nd0.1TiO3, unsintered BaTiO3 and BaTiO3 annealed in hydrogen (8% H2 + Ar) at 1000 K. The prevalence of mixed-valent titanium and iron in BaTi0.9Fe0.1O3−δ composition was evident from the XPS results and was further supported by the enhanced electrical conductivity at 298-550 K for BaTi0.9Fe0.1O3−δ in comparison to BaTiO3 and Ba0.9Nd0.1TiO3. Hydroxyl incorporation was facilitated by substituting Nd3+ in Ba-sublattice. The presence of hydroxyls was observed from the broadening of the O 1s peak in XPS studies of the compounds.  相似文献   

12.
The influence of La2O3 and Tm2O3 co-doping on the dielectric properties and the temperature stability of BaTiO3 was investigated. BaTiO3 ceramics were prepared with the compositional formula of (Ba1−xLax)(Ti1-x/4−yTmy)O3. La2O3 and Tm2O3 co-doping in BaTiO3 mainly had effects on an increase in the dielectric constant and the temperature stability, respectively. The increase of La2O3 concentration and the decrease of Tm2O3 concentration in BaTiO3 resulted in a decrease of lattice parameter and tetragonality because La3+ ion substituting for Ba site is smaller than Ba2+ ion and Tm3+ ion substituting for Ti site is larger than Ti4+ ion. With the increase of La2O3 and the decrease of Tm2O3, the dielectric constant of BaTiO3 was enhanced in spite of the reduction of tetragonality. P-E hysteresis measurements revealed that this phenomenon was based on the improvement of remanent polarization with the increase of La2O3 concentration. The introduction of excess Tm2O3 in BaTiO3 suppressed the grain growth and BaTiO3 ceramics showed higher temperature stability due to the stable tetragonal structure and the small grain size with the increase of Tm2O3 concentration.  相似文献   

13.
The results of the nuclear magnetic resonance of 57Fe in Al-, Ga- and In-substituted Y3Fe5O12 garnets are reported. When diamagnetic Ga3+ or Al3+ ions are substituted for tetrahedral Fe3+ ions, four satellite lines in the NMR spectrum of octahedral Fe3+ ions appear. The substitution of In3+ ions for octahedral Fe3+ ions leads to three satellite lines in the spectrum of tetrahedral Fe3+ ions. The hyperfine fields of these satellites are explained using the independent bond model for the hyperfine interaction. Suprisingly large change of the anisotropic part of the hyperfine field relative to the isotropic one was found.  相似文献   

14.
Z-type ferrites doped with La3+, Ba3−xLaxCo2Fe24O41 (x=0.00-0.30), were prepared by sol-gel method. The effect of the substitution La3+ rare-earth ions for Ba2+ ions on the microstructure, complex permeability, permittivity and microwave absorption of the samples was investigated. The results show that the major phase of the ferrites changed to Z-phase when sintering temperature was 1250 °C for 5 h. With the increase of the substitution ratio of La3+ ions from 0.0 to 0.3, the lattice parameters a and c increased gradually, which resulted in the change of the particle shape and size. The data of magnetism showed that the addition of La3+ ions make the ferrite a better soft magnetic material due to increase of magnetization (σs) and decrease of coercivity (Hc). The La3+ ions doped in the ferrite not only improved complex permeability and complex permittivity, but also microwave absorbency.  相似文献   

15.
57Fe Mössbauer effect studies were made on titanium substituted Li?Zn ferrite with composition Li0.45+0.5tZn0.1 Tit Fe2.45–1.5tO4 (t=0.0 to 1.2) at 300K. The Mössbauer spectra for t≤0.4 show two well defined Zeeman sextets corresponding to the Fe3+ ions at tetrahedral (A) and octahedral (B) sites. The spectra for t=0.6, 0.8 and 0.9 show relaxation but can still be resolved into 2 sextets. The spectra for t=1.0, 1.2 show strong ferrimagnetic relaxation with the spectra for t=1.2 exhibiting an additional central doublet. The effect of Ti4+ substitution on the Isomer shift (I.S), Quadrupole splitting (Q.S.) and nuclear magnetic fields of Li?Zn ferrites have been reported in this paper. The I.S. was found to be independent of substitution level t, while the quadrupole splitting was observed to be negligible. The variation of hyperfine field with t has been explained on the basis of superexchange interaction and cation distribution.  相似文献   

16.
Porous BiFeO3 has been prepared using cotton templates. Strongly enhanced ferromagnetism with saturate magnetization of 3 emu/g at 300 K has been observed. An energy band gap of 2.21 eV was determined from the UV-visible diffuse reflectance spectrum. The Raman and X-ray photoelectron spectroscopy measurements indicate the existence of Fe2+ and the suppression of the oxygen octahedral tilts. The enhanced ferromagnetism has been attributed to the enhanced double exchange interaction with increased angle of Fe2 +-O-Fe3 +.  相似文献   

17.
Greatly enhanced and abnormal Raman spectra were discovered in the nominal (Ba1 − xErx)Ti1 − x/4O3 (x = 0.01) (BET) ceramic for the first time and investigated in relation to the site occupations of Er3+ ions. BaTiO3 doped with Ti‐site Er3+ mainly exhibited the common Raman phonon modes of the tetragonal BaTiO3. Er3+ ions substituted for Ba sites are responsible for the abnormal Raman spectra, but the formation of defect complexes will decrease spectral intensity. A large increase in intensity showed a hundredfold selectivity for Ba‐site Er3+ ions over Ti‐site Er3+ ions. A strong EPR signal at g = 1.974 associated with ionized Ba vacancy defects appeared in BET, and the defect chemistry study indicated that the real formula of BET is expressed by (Ba1 − xEr3x/4)(Ti1 − x/4Erx/4)O3. These abnormal Raman signals were verified to originate from a fluorescent effect corresponding to 4S3/24I15/2 transition of Ba‐site Er3+ ions. The fluorescent signals were so intense that they overwhelmed the traditional Raman spectra of BaTiO3. The significance is that the abnormal Raman spectra may act as a probe for the Ba‐site Er3+ occupation in BaTiO3 co‐doped with Er3+ and other dopants. A new broad EPR signal at g = 2.23 was discovered, which originated from Er3+ Kramers ions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Single-phase hexagonal-type solid solutions based on the multiferroic YMnO3 material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn1−xCuxO3; x<0.15) and self-doping at the A-site (Y1+yMnO3; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn3+ two-dimensional lattice. The magnetic transition at TN decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn3+-Mn4+ interactions created by the substitution of Mn3+ by Cu2+, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn3+-Mn4+ pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure.  相似文献   

19.
Fe-doped TiO2 powder was prepared by high-energy ball milling, using TiO2 Degussa P-25 and α-Fe powders as the starting materials. The structure and magnetic properties of the Fe-doped TiO2 powder were studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and vibrating sample magnetometer. The Reitveld refinement of XRD revealed that ball milling not only triggered incorporation of Fe in TiO2 lattice but also induced the phase transformation from anatase to rutile in TiO2 and consequently the milled Fe-doped TiO2 powder contained only rutile.57Fe Mössbauer effect measure showed that Fe atoms existed in Fe2+ and Fe3+ state, which were assigned to the solid solution FexTi1−xO2. The magnetization measurements indicated that the milled Fe-doped TiO2 powder was ferromagnetic above room temperature. The ferromagnetism in our milled Fe-doped TiO2 powder seemingly does not come from Fe and iron oxides particles/clusters but from the Fe-doped TiO2 powder matrices.  相似文献   

20.
The dilute magnetic properties of SrSn1?xFexO3 (x = 0.01 ? 0.15) prepared by sol-gel and thermal decomposition methods were investigated by 57Fe Mössbauer spectrometry, magnetometry, and X-ray diffractometry. It was found that SrSnO3 doped with 2–8 % Fe show weak ferromagnetism although only paramagnetic doublets are observed in 57Fe Mössbauer spectra at room temperature (RT), whereas SrSnO3 doped with 10–15 % Fe show relatively strong ferromagnetism, and the sextets are additionally observed in the 57Fe Mössbauer spectra at RT. The weak ferromagnetism by doping 2–8 % Fe is considered to be caused by the induced magnetic defects, and the ferromagnetism by doping 10–15 % Fe are considered mainly due to the magnetic coupling between dilute Fe 3+ partially substituted at Sn 4+ sites in the orthorhombic structure of SrSnO3?δ accompanying the oxygen deficiencies. It is further remarkable that poor crystalline 8 % Fe doped SrSnO3?δ obtained by annealing at 600 °C shows relatively high saturation magnetization and low coercivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号