首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga1−xAlxAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.  相似文献   

2.
Electric field, hydrostatic pressure and conduction band non-parabolicity effects on the binding energies of the lower-lying states and the diamagnetic susceptibility of an on-center hydrogenic impurity confined in a typical GaAs/AlxGa1−xAs spherical quantum dot is theoretically investigated, by direct diagonalization of the Hamiltonian. To this end, the effect of band non-parabolicity has been performed, by means of the Luttinger-Kohn effective mass equation. Binding energies and diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot size, external electric field strength and hydrostatic pressure, with considering the edge-band non-parabolicity. Results show that the external electric field and the hydrostatic pressure have an obvious influence on the binding energies and the diamagnetic susceptibility of the impurity.  相似文献   

3.
We have studied three characteristics of a hydrogenic impurity located in the center of a quantum pseudodot within the effective mass approximation. These characteristics are the diamagnetic susceptibility, the spin-orbit interaction (SOI), and the relativistic correction (RC). First, we have solved analytically the Shrödinger equation without impurity by using the Laplace transformation. Then, we have applied the variational procedure to obtain energy levels and wave functions with a hydrogenic impurity in the center of quantum pseudodot. According to the results obtained from the present work reveals that (i) the diamagnetic susceptibility increases with increasing the pseudodot size, (ii) The mean value of r 2 increases when the pseudodot size increases, (iii) the SOI and RC increase by increasing the potential V 0, (iv) the RC and SOI approach to zero when the pseudodot increases, (v) the splitting between j=1/2 and 3/2 due to the SOI decreases by increasing pseudodot size.  相似文献   

4.
The binding energies of a hydrogenic donor both in the parabolic and non-parabolic conduction band model within the effective mass approximation have been computed for the low-dimensional semiconducting systems (LDSS) like quantum well, quantum well wire and quantum dot taking GaAs/AlxGa1−xAs systems as an example. It is observed that the effect of non-parabolicity is not effective when the system goes to lower dimensionality. The diamagnetic susceptibility of a hydrogenic donor impurity has also been computed in these LDSS in the infinite barrier model. Since no theoretical or experimental works on the diamagnetic susceptibility of LDSS are available in the literature, as a realistic case the diamagnetic susceptibility has been computed in the finite barrier model (x=0.3) for a quantum well and the results are discussed in the light of semiconductor-metal transition.  相似文献   

5.
The ground state and a few excited state energies of a hydrogenic donor in a quantum well are computed in the presence of pressure and temperature. The binding energies are worked out for GaAs/ Ga1−xAlxAs structures as a function of well size when the pressure and temperature are applied simultaneously. A variational approach within the effective mass approximation is considered. The results show that for a constant applied pressure, an increase in temperature results in a decrease in donor impurity binding energy while an increase in the pressure for the same temperature enhances the binding energy. When the pressure and temperature are applied simultaneously the binding energy decreases as the well width increases. In all the cases, it is observed that there is an increase in the binding energy due to the decrease in the quantum well size and in the dielectric constant whereas the effects of temperature on the effective mass are minimal.  相似文献   

6.
Binding energies and diamagnetic susceptibility of an impurity in a spherical GaAs quantum dot under the simultaneous influence of static pressure, temperature and laser radiation are investigated. Pressure- and temperature-dependent dressed potential which is produced by the combined effects of laser radiation and impurity considerably change the energy spectrum and diamagnetic susceptibility of the system. It is shown that binding energies and diamagnetic susceptibility increase with increasing pressure. Moreover, laser radiation effects on the diamagnetic susceptibility are not significant in comparison with its effects on the binding energy.  相似文献   

7.
In this work, the diamagnetic susceptibility and the bindingenergy of a hydrogenic donor impurity both in the parabolic andnon-parabolic conduction band models have been calculated withinthe effective mass approximation for a V-grooveGaAs/Ga1- x Al x As quantum wire. According to the resultsobtained from the present work reveals that (i) the value ofdiamagnetic susceptibility due to the non-parabolicity effect ishigher than that of parabolicity effect; (ii) the values ofdiamagnetic susceptibility and binding energy due to thenon-parabolicity effect is not appreciable at low Al molefractions; (iii) the diamagnetic susceptibility approaches to thebulk value both in L \(\rightarrow\) 0 or L \(\rightarrow\) ; (iv)the effect of non-parabolocity is not appreciable in the bindingenergy and energy dependent effective mass, for energies lowerthan 50 MeV.  相似文献   

8.
The donor bound spin polaron in a Cd1?xMnxTe quantum dot is investigated theoretically. Spin polaronic shifts are estimated using a mean field theory. Magnetization is calculated for various concentrations of Mn2+ ions with the dot sizes. The lowest binding energies in a diluted magnetic semiconductor of a Cd1?xMnxTe quantum dot are also estimated. Using the effective mass approximation, calculations are presented with and without spatial dependent effective masses. It is found that (i) the lowest binding energy decreases with the dot radius (ii) position dependent mass gives larger binding energy for smaller dots (iii) the ionization energy becomes more when spin interaction energy is included (iv) variation of increase in ionization energy is sharper for smaller dots with increase in concentration and (v) the magnetization of Mn subsystem increases when concentration of Mn2+ ions increases and it has appreciable changes for smaller dots.  相似文献   

9.
We present the calculation of diamagnetic susceptibility (χdia) of a hydrogenic donor in GaAs/AlxGa1−xAs quantum well for various compositions of Al and for different impurity locations within the well. The effect of Γ-X band crossing due to hydrostatic pressure on χdia is also investigated taking into account the non-parabolicity of the conduction band.  相似文献   

10.
Upon substitution of non-magnetic Al3+ for diamagnetic, low-spin, Co3+ in ferromagnetic La2MnCoO6, the ferromagnetic moment, measured at 82 K and 15 kOe, is found to increase initially with Al content and then decreases, though the magnetic transition temperature decreases continuously on increasing x in La2MnCo1−xAlxO6.  相似文献   

11.
The binding energy and diamagnetic susceptibility of an on-center hydrogenic donor impurity in an InAs spherical quantum dot placed at the center of a GaAs cylindrical nano-wire have been investigated using finite element method in the framework of the effective mass approximation. The binding energy and diamagnetic susceptibility are calculated as a function of the dot radius, nano-wire radius and nano-wire height. The results show that as the dot radius increases (I) for a dot radius smaller than some critical value, the effect of the spherical confinement on the energy levels becomes negligible and the energies remain constant, for a dot radius larger than some specific value, the energy levels decrease (II) the ground and the first excited state binding energies increase, reach a maximum and then decrease (III) the ground state diamagnetic susceptibility increases, reach a maximum and then decreases (IV) the first excited state diamagnetic susceptibility increases, indicating two maxima and then decreases. The effects of the nano-wire dimensions on the binding energy and diamagnetic susceptibility have also been studied. We found that the binding energy and diamagnetic susceptibility decrease reach a minimum value and then increase as the nano-wire radius increases. Finally we found that as the height of the nano-wire increases the ground state binding energy decreases, reaches a minimum value and then increases but the first excited state binding energy decreases and reaches a constant value.  相似文献   

12.
In the framework of perturbation theory, a variational method is used to study the ground state of a donor bound exciton in a weakly prolate GaAs/Ga1−xAlxAs ellipsoidal finite-potential quantum dot under hydrostatic pressure. The analytic expressions for the Hamiltonian of the system have been obtained and the binding energy of the bound exciton is calculated. The results show that the binding energy decreases as the symmetry of the dot shape reduces. The pressure and Al concentration have a considerable influence on the bound exciton. The binding energy increases monotonically as the pressure or Al concentration increases, and the influence of pressure or Al concentration is more pronounced for small quantum dot size.  相似文献   

13.
Simultaneous effects of conduction band non-parabolicity and hydrostatic pressure on the binding energies of 1S, 2S, and 2P states along with diamagnetic susceptibility of an on-center hydrogenic impurity confined in typical GaAs/AlxGa1-xAs spherical quantum dots are theoretically investigated using the matrix diagonalization method. In this regard, the effect of band non-parabolicity has been performed using the Luttinger-Kohn effective mass equation. The binding energies and the diamagnetic susceptibility of the hydrogenic impurity are computed as a function of the dot radius and different values of the pressure in the presence of conduction band non-parabolicity effect. The results we arrived at are as follows: the incorporation of the band edge non-parabolicity increases the binding energies and decreases the absolute value of the diamagnetic susceptibility for a given pressure and radius; the binding energies increase and the magnitude of the diamagnetic susceptibility reduces with increasing pressure.  相似文献   

14.
The binding energies of a hydrogenic donor in a GaAs spherical quantum dot in the Ga1−xAlxAs matrix are presented assuming parabolic confinement. Effects of hydrostatic pressure and electric field are discussed on the results obtained using a variational method. Effects of the spatial variation of the dielectric screening and the effective mass mismatch are also investigated. Our results show that (i) the ionization energy decreases with dot size, with the screening function giving uniformly larger values for dots which are less than about 25 nm, (ii) the hydrostatic pressure increases the donor ionization energy such that the variation is larger for a smaller dot, and (iii) the ionization energy decreases in an electric field. All the calculations have been carried out with finite barriers and good agreement is obtained with the results available in the literature in limiting cases.  相似文献   

15.
The temperature dependence of magnetization and magnetic susceptibility and hydrostatic pressure effect on the Surie temperature (dTc/dP) are measured for (Co1-xMnx)2B (0?x?0.4) amorphous alloys and the results are compared with those of crystalline compounds with the same composition. The Curie temperature decreases linearly with an increasing Mn content but magnetization shows a maximum around x=0.15. The reciprocal magnetic susceptibility of all the prepared alloys obeys the Curie-Weiss law above Tc. The magnitude of the negative value of dTc/dP decreases linearly with increasing x from about 1.1 K/kbar (x=0) to zero (x=0.4), the composition dependence of which is opposite to that of the crystalline compound. The composition dependence of the average magnetic moment per transition metal atom and the Curie temperature and dTc/dP are analysed on the basis of the local environment and the pair order interaction mode, respectively.  相似文献   

16.
57Fe Mössbauer study of the pseudo-Binary alloys Fe1?xMnxSn2 for 0≤x≤1.0 reveal the antiferromagnetically ordered state at 79K for all the specimens of the series. The hyperfine field at Fe site decreases with increasing manganese concentration. Magnetic susceptibility measurements performed in the temperature range 80 K≤T≤300 K indicate that the Néel temperature decreases with increasing Mn concentration for the samples withx≤0.4 whereas it increases continuously for the specimens havingx>0.4 of the alloy series.  相似文献   

17.
Mössbauer, X-ray diffraction, dc magnetization and ac susceptibility measurements have been carried out in the spinel ferrite GaxFe1-xNiCrO4 (0⩽x⩽1) in different temperature ranges between 1.4 and 700 K. These measurements show A site occupation of Fe3+ ions and a coexistence of ferrimagnetic and frustrated (entropic) spins in this system for all x. The frustration in this system arises due to the random distribution of Fe3+ and diamagnetic Ga3+ ions on the A sites, and those of Ni2+ and Cr3+ ions on B sites.  相似文献   

18.
Magnetic susceptibility (χ) and 51V NMR have been measured in (V1−xTix)2O3 near the phase boundary of the metal–insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc≈0.05 is not quantum critical, but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51V NMR spectrum around 181 MHz in addition to the ‘host’ resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x=0.055 sample. We associated the satellite with the V sites near Ti, which are in the V3+-like oxidation state, but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x=0.055 decreases below ∼60 K, but remains finite in the low-temperature limit.  相似文献   

19.
Based on the effective-mass approximation and variational procedure, ionized donor bound exciton (D+, X) states confined in strained wurtzite (WZ) GaN/AlxGa1-xN cylindrical (disk-like) quantum dots (QDs) with finite-height potential barriers are investigated, with considering the influences of the built-in electric field (BEF), the biaxial strain dependence of material parameters and the applied hydrostatic pressure. The Schrödinger equation via the proper choice of the donor bound exciton trial wave function is solved. The behaviors of the binding energy of (D+, X) and the optical transition associated with (D+, X) are examined at different pressures for different QD sizes and donor positions. In our calculations, the effective masses of electron and hole, dielectric constants, phonon frequencies, energy gaps, and piezoelectric polarizations are taken into account as functions of biaxial strain and hydrostatic pressure. Our results show that the hydrostatic pressure, the QD size and the donor position have a remarkable influence on (D+, X) states. The hydrostatic pressure generally increases the binding energy of (D+, X). However, the binding energy tends to decrease for the QDs with large height and lower Al composition (x<0.3) if the donor is located at z0≤0. The optical transition energy has a blue-shift (red-shift) if the hydrostatic pressure (QD height) increases. For the QDs with small height and low Al composition, the hydrostatic pressure dependence of the optical transition energy is more obvious. Furthermore, the relationship between the radiative decay time and hydrostatic pressure (QD height) is also investigated. It is found that the radiative decay time increases with pressure and the increment tendency is more prominent for the QDs with large height. The radiative decay time increases exponentially reaching microsecond order with increasing QD height. The physical reason has been analyzed in depth.  相似文献   

20.
The susceptibility of TMTSF-DMTCNQ was measured in the newly discovered highly-conducting state under pressure. At a pressure of 12 kbar, the susceptibility χm (with the core diamagnetism subtracted) changes sign from the room-temperature paramagnetic value and becomes diamagnetic at a temperature of approximately 30 K. At a temperature of 5–10 K χm reaches a value of approximately ?7 × 10?4 emu mole?1. This value is about 3 times larger than the previously reported diamagnetism of HMTSF-TCNQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号