首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020+/-0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3.  相似文献   

2.
We demonstrate the time reversal Aharonov-Casher (AC) effect in small arrays of mesoscopic semiconductor rings. By using an electrostatic gate we can control the spin precession rate and follow the AC phase over several interference periods. We show that we control the precession rate in two different gate voltage ranges; in the lower range the gate voltage dependence is strong and linear and in the higher range the dependence in almost an order of magnitude weaker. We also see the second harmonic of the AC interference, oscillating with half the period. We finally map the AC phase to the spin-orbit interaction parameter alpha and find it is consistent with Shubnikov-de Haas analysis.  相似文献   

3.
We explore the ultrafast limit of spin torque magnetization reversal time. Spin torque precession during a spin torque current pulse and free magnetization ringing after the pulse is detected by time-resolved magnetotransport. Adapting the duration of the pulse to the precession period allows coherent control of the final orientation of the magnetization. In the presence of a hard axis bias field, we find optimum quasiballistic spin torque magnetization reversal by a single precessional turn directly from the initial to the reversed equilibrium state.  相似文献   

4.
The influence of the skin effect on single and triple (spin echo) gamma detected pulsed NMRON signals is calculated using a density matrix approach within a pure Zeeman manifold. For single pulse NMRON the turn angle dependences of the signals for uniform and exponential profiles of the resonant nuclei are presented for a typical inhomogeneous broadening applicable to intermediate mass impurities in ferromagnetic hosts. For triple pulse NMRON the baseline and principal spin echo amplitudes for equal resonant rf pulses are presented for the same inhomogeneous broadening. It is found that the skin effect leads to the form of pulsed NMRON signals that are in accord with experiment.  相似文献   

5.
We report a study of spin-dependent transport through a quantum dot irradiated by continuous circularly polarized light resonant to the electron-heavy hole transition. We use the nonequilibrium Green's function to calculate the spin accumulation, spin-resolved currents, and current polarization in the presence of an external bias and intradot Coulomb interaction. It is found that for a range of external biases sign reversal of the current polarization can be modulated. The system thus operates as a rectifier for spin current polarization. This effect follows from the interplay between the external irradiation and the Coulomb repulsion. The spin-polarized transport through a three-terminal device is also discussed. Spin current with high polarization could be obtained due to spin filter effect.  相似文献   

6.
We describe a high-field longitudinally detected electron spin resonance (LOD-ESR) spectrometer operating at 35 and 75 GHz. The lack of resonant microwave circuits facilitates operation at different microwave frequencies without changing the probehead. A very low noise radio frequency detection compensates partially the resulting low sensitivity. The major elements of the LOD-ESR spectrometer are commercially available and may be adapted to usual high frequency spectrometers. The instrument allows field and frequency dependent spin lattice relaxation time (T1) studies. T1 in the range of 2-80 ns can be determined from the phase sensitively detected LOD-ESR spectra. We demonstrate the performance of the apparatus by the measurement of T1 in the normal state of RbC60, an electrically conducting alkaline fulleride polymer.  相似文献   

7.
We show that the resonant coupling of phonons and magnons can be exploited to generate spin currents at room temperature. Surface acoustic wave pulses with a frequency of 1.55 GHz and duration of 300 ns provide coherent elastic waves in a ferromagnetic thin-film-normal-metal (Co/Pt) bilayer. We use the inverse spin Hall voltage in the Pt as a measure for the spin current and record its evolution as a function of time and external magnetic field magnitude and orientation. Our experiments show that a spin current is generated in the exclusive presence of a resonant elastic excitation. This establishes acoustic spin pumping as a resonant analogue to the spin Seebeck effect.  相似文献   

8.
飞秒激光在激光核聚变、卫星精密测距、激光微加工等领域具有重要的应用前景,同时也是产生太赫兹波的主要泵浦源。介绍了国内外飞秒激光脉冲宽度和脉冲波形的测试方法,比较了自相关法、频率分辨光学快门法、光谱相位相干直接电场重构法的优缺点。自相关法具有脉宽测量范围广、结构简单等特点,但不具备脉冲波形测试能力。光谱相位相干直接电场重构法对待测激光光束质量要求较高, 不适合大量程范围激光脉宽快速测量。为满足10 fs~5 ps大量程范围超短激光脉冲宽度和脉冲波形的测试需求,采用自相关法及二次谐波频率分辨光学开关法研制飞秒激光脉冲宽度和脉冲波形测试仪,时间分辨率优于2 fs。  相似文献   

9.
We present first principles simulations of the direct collisionless coupling of the free energy of fusion-born ions into electron current in a magnetically confined fusion plasma. These simulations demonstrate, for the first time, a key building block of some "alpha channeling" scenarios for tokamak experiments. Spontaneously excited obliquely propagating waves in the lower hybrid frequency range undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the electron parallel velocity distribution, which carries a current.  相似文献   

10.
唐蓉  王国利  李小勇  周效信 《物理学报》2016,65(10):103202-103202
通过数值求解一维原子的含时薛定谔方程, 研究了具有共振结构的原子在双色场(红外激光(IR)+极紫外光(XUV)) 驱动下发射高次谐波的特征. 研究结果表明, 具有共振结构的原子所发射的高次谐波与无共振结构原子(简称为一般原子)发射的高次谐波有明显不同, 共振结构的原子除了在某一能量附近(原子的共振能量+电离能)高次谐波的强度有很大提高外, 它还对XUV光的响应较一般原子表现得更为敏感, 即使XUV光的强度较弱, 也能够明显提高XUV光脉冲中心频率附近的谐波强度, 更重要的是通过调节双色场的时间延迟, 能使输入的XUV光的脉宽得到明显的压缩, 通过时间-频率分析给出了发生这种现象的原因. 由此提出了通过滤波-连续反馈的方式可使XUV光的脉冲从200 as压缩至120 as左右.  相似文献   

11.
Perturbative chirped pulse excitation leads to oscillations of the excited state amplitude. These coherent transients are governed by interferences between resonant and off-resonant contributions. Control mechanisms in both frequency and time domain are used to modify these dynamics. First, by applying a phase step in the spectrum, we manipulate the phase of the oscillations. By direct analogy with Fresnel zone lenses, we then conceive highly phase-amplitude modulated pulse shapes that slice destructive interferences out of the excitation time structure and enhance the final population.  相似文献   

12.
A study on characteristics of electrons tunneling through semiconductor barrier is evaluated, in which we take into account the effects of Rashba spin-orbit interaction. Our numerical results show that Rashba spin-orbit effect originating from the inversion asymmetry can give rise to the spin polarization. The spin polarization does not increase linearly but shows obvious resonant features as the strength of Rashba spin-orbit coupling increases, and the amplitudes of spin polarization can reach the highest around the first resonant energy level. Furthermore, it is found that electrons with different spin orientations will spend quite different time through the same heterostructures. The difference of the dwell time between spin-up and spin-down electrons arise from the Rashba spin-orbit coupling. And it is also found that the dwell time will reach its maximum at the first resonant energy level. It can be concluded that, in the time domain, the tunneling processes of the spin-up and spin-down electrons can be separated by modulating the strength of Rashba spin-orbit coupling. Study results indicate that Rashba spin-orbit effect can cause a nature spin filter mechanism in the time domain.  相似文献   

13.
王健  吴世巧  梅军 《物理学报》2017,66(22):224301-224301
构建了一种简单的二维声子晶体:由两个横截面为三角形的钢柱所组成的复式元胞按三角点阵的形式排列在空气中,等效地形成了一个蜂巢点阵结构.当三角形钢柱的取向与三角点阵的高对称方向一致时,整个体系具有C_(6v)对称性.研究发现:在保持钢柱填充率不变的条件下,只需要将所有三角柱绕着自己的中心旋转180°,就可实现二重简并的p态和d态在布里渊区中心Γ点处的频率反转,且该能带反转过程实质上是一个拓扑相变过程.通过利用Γ点的P态和d态的空间旋转对称性,构造了一个赝时反演对称性,并在声学系统中实现了类似于电子系统中量子自旋霍尔效应的赝自旋态.随后通过k·p微扰法导出了Γ点附近的有效哈密顿量,并分别计算了拓扑平庸和非平庸系统的自旋陈数,揭示了能带反转和拓扑相变的内在联系.最后通过数值模拟演示了受到拓扑不变量保护的声波边界态的单向传输行为和对缺陷的背向散射抑制.文中所研究的声波体系,尽管材料普通常见,但其拓扑带隙的相对宽度超过21%,比已报道的类似体系的带隙都要宽,且工作原理涵盖从次声波到超声波的很大频率范围,从而在实际应用上具有较大的优势和潜力.  相似文献   

14.
In this paper, we present an equivalent low-order nonlinear system that describes the dynamics of a generic class of post-tensioned frames. The proposed nonlinear single degree of freedom system is derived from energy considerations. We demonstrate that the equation of motion for the entire, planar, post-tensioned frame is equivalent to the dynamics of a single tied rocking block on an elastic foundation. As validation for this analytical model we present physical tests (1/4 scale) undertaken at Bristol. Quasi-static push-pull-over tests and dynamic frequency sine sweep shake table tests are conducted on the physical model. Comparison of results indicate that the analytical model predicts both quasi-static nonlinear push-over and nonlinear dynamic resonant behaviour very well. Further numerical simulations on the analytical model identify the nonlinear resonant frequency backbone curves for a range of system parameters. We explore catchment basins of both Poincaré phase and system parameter spaces. In addition we describe failure boundaries and system integrity surfaces giving an indication as to likely bounds on forcing amplitudes.  相似文献   

15.
Spin torque transfer structures with new spin switching configurations are proposed, fabricated and investigated in this paper. The non-uniform current-induced magnetization switching is implemented based on both GMR and MTJ nano devices. The proposed new spin transfer structure has a hybrid free layer that consists of a layer with conductive channels (magnetic) and non-conductive matrix (non-magnetic) and traditional free layer(s). Two mechanisms, a higher local current density by nano-current-channels and a non-uniform magnetization switching (reversal domain nucleation and growth) by a magnetic nanocomposite structure, contribute in reducing the switching current density. The critical switching current density for the new spin transfer structure is reduced to one third of the typical value for the normal structure. It can be expected to have one order of magnitude or more reduction for the critical current density if the optimization of materials and fabrication processes could be done further. Meanwhile, the thermal stability of this new spin transfer structure is not degraded, which may solve the long-standing scaling problem for magnetic random access memory (MRAM). This spin transfer structure, with the proposed and demonstrated new spin switching configurations, not only provides a solid approach for the practical application of spin transfer devices but also forms a unique platform for researchers to explore the non-uniform current-induced switching process.  相似文献   

16.
Low energy scattering amplitudes for two atoms in one- and two-dimensional atomic waveguides are derived for short range isotropic and resonant interactions in high partial wave channels. Taking into account the finite width of the resonance which was neglected in previous works is shown to have important implications in the properties of the confinement induced resonances. For spin polarized fermions in quasi-1D waveguides, it imposes a strong constraint on the atomic density for achieving the Fermi Tonks Girardeau gas. For a planar waveguide, the characteristics of the 2D induced scattering resonances in p- and d-waves are determined as a function of the 3D scattering parameters and of the waveguide frequency.  相似文献   

17.
We investigate mesoscopic transport through a system that consists of a central quantum dot (QD) and two single-wall carbon nanotube (SWCN) leads in the presence of a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunnelling current is sensitively related to the spin-flip effect. We present the calculations of charge and spin current components to show the intimate relations to the SWCN leads. Zeeman effect is important when the applied magnetic field is strong enough. The current characteristics are quite different when the source-drain bias is zero (eV=0) and nonzero (eV≠0). The asymmetric peak and valley of spin current versus gate voltage exhibit Fano resonance. Multi-resonant peaks of spin current versus photon energy ħω reflect the structure of CN quantum wires, as well as the resonant photon absorption and emission effect. The matching-mismatching of channels in the CN leads and QD results in novel spin current structure by tuning the frequency.  相似文献   

18.
Using Molecular Dynamics simulations, we investigate the effect of alternating (AC) electric field on static and dynamic properties of water. The central question we address is how hydrogen bonds respond to perpetual field-induced dipole reorientations. We assess structural perturbations of water network and changes of hydrogen bond dynamics in a range of alternating electric field strengths and frequencies using a non-polarisable water model, SPC/E, and two distinct polarisable models: SWM4-NDP and BK3. We confirm that AC field causes only moderate structural perturbations. Dynamic properties, including the rates of bond breaking, switching of hydrogen-bonding partners, and diffusion, accelerate with the strength of AC fields. All models reveal a nonmonotonic frequency dependence with fastest dynamics at frequencies around 200?GHz where the period of the field oscillation is commensurate with the average time it takes a typical proton to switch from one acceptor to another. Higher frequencies result in smaller amplitudes of angle oscillations and in reduced probability to complete the switch to another acceptor before the field reversal restores the original configuration. As frequency increases, these effects gradually weaken the influence of the field on the kinetics of hydrogen bonding and the associated rates of translational and rotational diffusion in water.  相似文献   

19.
We study the spin-polarized transport and Fano resonance in an Aharonov-Bohm (AB) interferometer with an embedded quantum dot, where the dot is irradiated by continuous circularly polarized light. Compared with the conventional Fano form, the resonance line shape is found to be deformed by the interplay between the external irradiation and the Coulomb repulsion. The Fano resonance peaks are split due to the shift of the effective energy level in the dot by Rabi oscillation of electron-heavy hole pairs. The direction and magnitude of spin current polarization can be modulated by the device parameters. Furthermore, the direct tunneling between two leads can induce a sharp sign reversal of spin polarization, the system thus operates as a rectifier for spin current polarization.  相似文献   

20.
In this paper, frequency-doubled Nd:YAG laser's phase conjugation has been investigated experimentally using resonant degenerate four-wave mixing (DFWM). The iodine solution was used as resonant medium. In this way, the energy of the DFWM phase conjugation beam arrived at 43μJ/pulse while the total pump beam's energy reached 8mJ/pulse. The relation between the pulse energy of the DFWM phase conjugation beam and that of the pump beam was investigated. We also measured the optical field distributions of pump beam and DFWM phase conjugation beam, from which it can be noticed that the DFWM phase conjugation can improve the laser beam quality. At the same time, we observed the influence of the pump beam's disturbance on the DFWM signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号