首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The structural, elastic and thermal properties of four transition metal monocarbides ScC, YC (group III), VC and NbC (group V) have been investigated using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) both at ambient and high pressure. We predict a B1 to B2 structural phase transition at 127.8 and 80.4 GPa for ScC and YC along with the volume collapse percentage of 7.6 and 8.4%, respectively. No phase transition is observed in case of VC and NbC up to pressure 400 and 360 GPa, respectively. The ground state properties such as equilibrium lattice constant (a0), bulk modulus (B) and its pressure derivative (B′) are determined and compared with available data. We have computed the elastic moduli and Debye temperature and report their variation as a function of pressure.  相似文献   

2.
A pressure induced structural phase transition from NaCl-type (B1) to CsCl-type (B2) structure has been predicted in transition metal carbides, namely TiC, ZrC, NbC, HfC, and TaC by using an interionic potential theory with modified ionic charge (Zm ), which includes Coulomb screening effect due to d-electron. The phase transition pressure (PT ) relies on large volume discontinuity in pressure–volume relationship, and identifies the structural phase transition from B1 phase to B2 phase. The variation of second-order elastic constants with pressure follows a systematic trend identical to that observed in other compounds of NaCl-type structure. The Born criterion for stability is found to be valid in transition metal carbides.  相似文献   

3.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

4.
Pressure induced structural aspects of NaCl-type (B1) to CsCl-type (B2) structure in alkaline earth chalcogenides (AECs) magnesium chalcogenides (MgX; X=S, Se, and Te) are presented. An effective interionic interaction potential (EIoIP) with long-range Coulomb interactions and the Hafemeister and Flygare type short-range overlap repulsion extending up to the second neighbor ions and the van der Waals (vdW) interaction is developed. The vdW coefficients are evaluated following the Slater-Kirkwood variational method, as both the ions are polarizable. The present calculations have revealed reasonably good agreement with the available experimental data on structural transition (B1-B2 structure), the phase transition pressures Pt of 167 (MgS), 170 (MgSe), and 176 (MgTe) GPa as well the elastic properties. The calculated values of the volume collapses [ΔV(P)/V(0)] are also closer to their observed data. Further, the variations of the second and third order elastic constants with pressure have followed a systematic trend, which are almost identical to those exhibited by the observed data measured for other semiconducting compounds with rocksalt (B1) type crystal structure. The Born and relative stability criteria is valid in Mg monochalcogenides.  相似文献   

5.
Pressure induced structural phase transition of mono-antimonides of lanthanum, cerium, praseodymium and neodymium (LnSb, Ln=La, Ce, Pr and Nd) has been studied theoretically using an inter-ionic potential with modified ionic charge which parametrically includes the effect of Coulomb screening by the delocalized f electrons of rare earth (RE) ion. The anomalous structural properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Ln ion with the p orbital of neighbouring antimonide ion. All the four compounds are found to undergo from their initial NaCl (B1) phase to body centered tetragonal (BCT) phase at high pressure and agree well with the experimental results. The body centered tetragonal phase is viewed as distorted CsCl structure and is highly anisotropic with c/a=0.82. The transition pressure of LnSb compounds is observed to increase with decreasing lattice constant in NaCl phase. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-Sb) distances at high pressure. The calculated values of elastic constants are also reported.  相似文献   

6.
The high-pressure structural phase transition in six transition metal mononitrides (TMNs) (M=Ti, Mo, V, Nb, Hf, and Zr), have been studied using a two-body interionic potential theory which includes the effect of Coulomb screening due to the semi-metallic nature of these compounds. The present theoretical results have been compared with the corresponding experimental and predictions of LDA theory. These TMN compounds have been found to undergo NaCl (B1) to CsCl (B2) phase transition, at a pressure quite high as compared to other binary systems. We have also predicted the elastic constants. It is shown that these binary materials are partially ionic in nature and the structural transformation is analogous to several other ionic binary systems.  相似文献   

7.
The high pressure structural, elastic and thermal properties of holmium pnictides HoX (X=N, P, As and Bi) were investigated theoretically by using an inter-ionic potential theory with modified ionic charge parameter. We have predicted a structural phase transition from NaCl (B1) to CsCl (B2)-type structure at pressure of 139 GPa for HoN, 52 GPa for HoP, 44 GPa for HoAs and 26 GPa for HoBi. Other properties, such as lattice constant, bulk modulus, cohesive energy, second and third-order elastic constants were calculated and compared with the available experimental and theoretical data. In order to gain further information the brittle behaviour of these compounds was observed. Some other properties like Shear modulus (G), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), sound velocities, Debye temperature (θD) were calculated. The variation of elastic constants (C11 and C44) and Debye temperature (θD) with pressure was also presented.  相似文献   

8.
The structural phase transition and electronic properties at ambient (B 1-phase) and high pressure (B 2-phase) of heavy rare earth monoantimonides (RESb; RE?=?Ho, Er, and Tm) have been studied theoretically using the self-consistent tight binding linear muffin tin orbital method. These compounds show metallic behavior under ambient condition and undergo a structural phase transition to the B 2 phase at high pressure. We predict a structural phase transition from the B 1 to B 2 phase in the pressure range 30.0–35.0?GPa. Apart from this, the ground state properties, such as lattice parameter and bulk modulus are calculated and compared with the available theoretical and experimental results.  相似文献   

9.
Pressure-induced structural phase transition of gadolinium monopnictides GdX (X=As and Sb) has been studied theoretically using an inter-ionic potential theory. This method has been found quite satisfactory in case of the pnictides of rare-earth and describes the crystal properties in the framework of rigid-ion model. We have modified the ionic charge so that it may include the Coulomb-screening effect by the delocalization of f electron of the rare-earth ion. The anomalous structural properties of these compounds with many f electrons have been interpreted in terms of the hybridization of f electrons with the conduction band and strong mixing of f states of Gd ion with the p orbital of neighbouring pnictogen ion. Both the compounds are found to undergo from their initial NaCl (B1) structure to body centered tetragonal (BCT) structure at high pressure and agree well with the experimental results. The BCT structure is viewed as distorted CsCl structure and is highly anisotropic with c/a=0.82–0.85. The nature of bonds between the ions is predicted by simulating the ion–ion (Gd–Gd and Gd–X) distance at high pressure. Elastic properties of these compounds have also been studied with their second-order elastic constants.  相似文献   

10.
The features of structural phase transitions that occur under high pressure are studied. The density functional theory is used to calculate the B1–B2 phase transition pressure as a function of the crystal size for small-sized alkali halide crystals. A size effect (an increase in the phase transition pressure as the crystal grain radius decreases) is revealed for the B1–B2 transitions in all halogen compounds except for lithium fluoride, for which the dependence is inverse.  相似文献   

11.
We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter (a0), bulk modulus (B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.  相似文献   

12.
The tight-binding linear muffin tin orbital (TB-LMTO) method within the local density approximation is used to calculate structural, electronic and magnetic properties of GdN under pressure. Both nonmagnetic (NM) and magnetic calculations are performed. The structural and magnetic stabilities are determined from the total energy calculations. The magnetic to ferromagnetic (FM) transition is not calculated. Magnetically, GdN is stable in the FM state, while its ambient structure is found to be stable in the NaCl-type (B1) structure. We predict NaCl-type to CsCl-type structure phase transition in GdN at a pressure of 30.4 GPa. In a complete spin of FM GdN the electronic band picture of one spin shows metallic, while the other spin shows its semiconducting behavior, resulting in half-metallic behavior at both ambient and high pressures. We have, therefore, calculated electronic band structures, equilibrium lattice constants, cohesive energies, bulk moduli and magnetic moments for GdN in the B1 and B2 phases. The magnetic moment, equilibrium lattice parameter and bulk modulus is calculated to be 6.99 μB, 4.935 Å and 192.13 GPa, respectively, which are in good agreement with the experimental results.  相似文献   

13.
We have predicted the phase transition pressure (P T )and high pressure behavior of Zirconium and Niobium carbide (ZrC, NbC). The high pressure structural phase transitions in ZrC and NbC has been studied by using a two body inter-ionic potential model, which includes the Coulomb screening effect, due to the semi-metallic nature of these compounds. These transition metal carbides have been found to undergo NaCl (B1) to CsCl (B2)-type structural phase transition, at high pressure like other binary systems. We predict such structural transformation in ZrC and NbC at a pressure of 98GPa and 85GPa respectively. We have also predicted second order elastic constant and bulk modulus. The present theoretical work has been compared with the corresponding experimental data and prediction of LAPW and GGA and LDA theories.   相似文献   

14.
We investigated the high pressure phases of CdF2 by a joint theoretical and experimental study. The structural and electronic properties of CdF2 were extensively explored to high pressure by ab initio calculations based on the density functional theory. A structural phase transition from the fluorite-type  (Fm-3m, Z=4) structure to the cotunnite-type (Pnma, Z=4) structure was estimated below 8 GPa, and this phase transition was examined by the high pressure experiments up to 35 GPa at room temperature. Both high pressure angle dispersive X-ray diffraction and Raman spectroscopy experiments provided convincing evidence to verify the phase transition. Our work makes clear pressure-induced phase transitions and structural information of CdF2 under high pressure.  相似文献   

15.
We have studied the structural, elastic, electronic properties, and pressure-induced phase transition of CuGaO2 by using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The obtained ground state properties of three phases were in agreement with previous works. The calculated enthalpy variations with pressure showed that the structural phase transition (β → 3R/2H) appeared at 65.5 ± 1 GPa. The changes in volume and band gap of β phase showed that there was a break between 30 and 40 GPa. The independent elastic constants of three phases were calculated. The 3R, 2H, and β phases were all mechanical stability and behaved in ductile manner under zero pressure.  相似文献   

16.
We have investigated the pressure-induced phase transition of NiO and other structural properties using three-body potential approach. NiO undergoes phase transition from B1 (rocksalt) to B2 (CsCl) structure associated with a sudden collapse in volume showing first-order phase transition. A theoretical study of high pressure phase transition and elastic behaviour in transition metal compounds using a three-body potential caused by the electron shell deformation of the overlapping ion was carried out. The phase transition pressure and other properties predicted by our model is closer to the phase transition pressure predicted by Eto et al.   相似文献   

17.
The structural properties and mechanical stabilities of B2-IrTi have been investigated using first-principle calculations. The elastic constants calculations indicate that the B2-IrTi is unstable to external strain and the softening of C11C12 triggers the B2-IrTi (cubic) to L10-IrTi (tetragonal) phase transformation. Detailed electronic structure analysis revealed a Jahn–Teller-type band split that could be responsible for elastic softening and structure phase transition. The cubic–tetragonal transition is accompanied by a reduction in the density of states (DOS) at the Fermi level and the d-DOS of Ti at Fermi level plays a decisive role in destabilizing the B2-IrTi phase.  相似文献   

18.
Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.  相似文献   

19.
20.
吕兵  令狐荣锋  易勇  杨向东 《中国物理 B》2010,19(7):76201-076201
This paper carries out the First principles calculation of the crystal structures (zinc blende (B3) and rocksalt (B1)) and phase transition of boron arsenic (BAs) based on the density-functional theory. Using the relation between enthalpy and pressure, it finds that the transition phase from the B3 structural to the B1 structural occurs at the pressure of 113.42GPa. Then the elastic constants C11, C12, C44, bulk modulus, shear modulus, Young modulus, anisotropy factor, Kleinman parameter and Poisson ratio are discussed in detail for two polymorphs of BAs. The results of the structural parameters and elastic properties in B3 structure are in good agreement with the available theoretical and experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号