共查询到20条相似文献,搜索用时 18 毫秒
1.
A.A. Yaremchenko A.V. Kovalevsky E.N. NaumovichV.V. Kharton J.R. Frade 《Solid State Ionics》2011,192(1):252-258
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease. 相似文献
2.
Lance Horng G. Chern M. C. Chen P. C. Kang D. S. Lee 《Journal of magnetism and magnetic materials》2004,270(3):389-396
Epitaxial thin films of Fe3O4 and CoFe2O4 on MgO (0 0 1) substrates were grown by molecular beam epitaxy at low temperature growth process. Magnetization and hysteresis loop of both films were measured to investigate magnetic anisotropic properties at various temperatures. Anomalous magnetic properties are found to be correlated with crystalline, shape, and stress anisotropies. The Fe3O4 film below Verwey structural transition has a change in crystal structure, thus causing many anomalous magnetic properties. Crystalline anisotropy and anomalous magnetic properties are affected substantially by Co ions. The saturation magnetization of Co–ferrite film becomes much lower than that of Fe3O4 film, being very different from the bulks. It indicates that the low temperature growth process could not provide enough energy to have the lowest energy state. 相似文献
3.
Q.J. Han D.H. JiG.D. Tang Z.Z. LiX. Hou W.H. QiS.R. Liu R.R. Bian 《Journal of magnetism and magnetic materials》2012
Ferrite samples of the composition Cu0.5−xNi0.5ZnxFe2O4 (0.0≤x≤0.5) were synthesized by chemical co-precipitation. The samples exhibited a single phase cubic spinel structure, and the saturation magnetization of the samples was found to increase with increasing Zn content. Using a quantum mechanical method proposed by our group, the cation distributions in the samples were estimated. Estimated cation distributions obtained by fitting the magnetic moments of the samples were then used to perform Rietveld fitting for X-ray diffraction patterns. The acceptable error parameters in the Rietveld fitting indicate that the estimated cation distributions in the samples are reasonable. 相似文献
4.
We report on the structural, magnetic and electronic transport properties of thin MnxGe1−x films grown at 350 °C. Isolated Mn5Ge3 nanoclusters, about 100 nm in size, were formed at the top surface of the film, dominating the magnetic properties of the whole film. Electronic transport properties show Mn doping effect indicating the presence of substitutional Mn ions dispersed in the Ge host, contributing to the formation of a MnxGe1−x diluted phase. Electrical behaviour indicates a saturation effect with the raise of the nominal Mn concentration in the film, above x ≅ 0.03. 相似文献
5.
Using first-principles density functional theory within the generalized gradient approximation method, the effect of Zn doping on electronic and magnetic properties of NiFe2O4 ferrite spinel has been studied. The crystal structure of the compounds is assigned to a pseudocubic structure and the lattice constant increases as the Zn concentration increases. Our spin-polarized calculations give a half-metallic state for NiFe2O4 and a normal metal state for ZnxNi1−xFe2O4 (0<x≤0.5). Based on the magnetic properties calculations, it is found that the saturation magnetic moment enhances linearly with increase in the Zn content in NiFe2O4. The Zn doping in NiFe2O4 also induces strong ferrimagnetism since it decreases the magnetic moment of A-sites. 相似文献
6.
Single-phase BiFe1 − xCrxO3 (x=0, 0.05 and 0.1) compounds are synthesized by a sol-gel process. The lattice parameters decrease and the magnetizations increase with the Cr content. Moreover, the magnetoelectric coupling between magnetic order and ferroelectric order at room temperature was enhanced. 相似文献
7.
S.M. Patange Sagar E. ShirsathK.S. Lohar S.S. JadhavNilesh Kulkarni K.M. Jadhav 《Physica B: Condensed Matter》2011,406(3):663-668
Nickel-aluminum ferrite system NiAlxFe2−xO4 has been synthesized by wet chemical co-precipitation method. The samples were studied by means of X-ray diffraction, d.c. electrical resistivity, a.c. electrical resistivity, a.c. conductivity and switching properties. The XRD patterns confirm the cubic spinel structure for all the synthesized samples. The crystallite size calculated from XRD data which confirm the nano-size dimension of the prepared samples. Electrical properties such as a.c. and d.c. resistivities as function of temperature were studied for various Al substitution in nickel ferrite. The dielectric constant and dielectric loss tangent were also studied as a function of frequency. The dielectric constant follows the Maxwell-Wagner interfacial polarization. A.C. conductivity increases with increase in applied frequency. The d.c. resistivity decreases as temperature increases, which indicate that the sample have semi-conducting nature. Verwey hoping mechanism explains the observed variation in resistivity. The activation energy is derived from the temperature variation of resistivity. Electrical switching properties were studied as I-V measurements. The current controlled negative resistance type switching is observed in all the samples. The Al substitution in nickel ferrite decreases the required switching field. 相似文献
8.
A confocal Raman investigation of Pb1 − xLaxTi1 − x/4O3 (PLT) thin films grown by RF magnetron sputtering on PbOx/Pt/Ti/SiO2/Si substrates with an intermediate LaSrCoO3 (LSCO) layer was performed. The influence of the LaSrCoO3 buffer layer was analyzed taking advantage of the observed Raman spectral band variation, which varied according to different manufacturing procedures. In the presence of a LSCO layer, the A1(1TO) Raman mode, which was indicative of tetragonal distortion, was pronouncedly enhanced, and a slight deviation from the (0 0 1) plane of the film was observed from the angular dependence of the polarized Raman spectral intensity. Furthermore, the spectral band variation as well as the residual stress along the in-depth direction was measured in the film from cross-sectional spectral line scans. This latter measurement showed a relaxation of the lattice mismatch in the presence of LSCO and PbO layers. 相似文献
9.
Qingyu Xu Shengqiang ZhouZheng Wen Di WuTeng Qiu Mingxiang XuKay Potzger Heidemarie Schmidt 《Physics letters. A》2011,375(8):1209-1212
Bi(Fe1 − xMnx)O3 ceramics (x up to 0.3) were prepared by rapid sintering. Weak ferromagnetism with two magnetic anomalies at low temperatures was observed for Bi(Fe0.95Mn0.05)O3 and Bi(Fe0.9Mn0.1)O3. From temperature-dependent magnetic relaxation measurements, the anomalies at 20 K and 100 K are related to the freezing of cluster spin glass. 相似文献
10.
M. Hamedoun A. Benyoussef M. Bousmina 《Journal of magnetism and magnetic materials》2010,322(21):3227-1638
Using mean field theory and high-temperature series expansions (HTSEs), extrapolated with the Padé approximants method, the effect of Zn doping on magnetic properties of NiFe2O4 ferrite spinel has been studied. The nearest neighbour super-exchange interactions for intra-site (JAA, JBB) and inter-site (JAB) of the ZnxNi1−xFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The paramagnetic Curie-Weiss temperature θ and the Curie temperature TC are calculated as a function of Zn concentration. The critical exponent γ associated with magnetic susceptibility is calculated. The spin correlation functions intra-plane and inter-plane have been also computed and compared with exchange couplings. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements and Mössbauer spectroscopy. 相似文献
11.
Magnetic properties and exchange-coupling interactions of diluted magnetic spinels A1−xA′xB2X4, where A and B are magnetic ions, namely Co1−xMgxFe2O4, were investigated using the high-temperature series expansion method (HTSE) and the distribution method of magnetic cations in the range 0≤x≤1. The magnetic phase diagram and transition temperature versus dilution x were determined using the Padé approximants method along with HTSE. The critical exponent associated with the magnetic susceptibility γ was then deduced. The obtained results are in good agreement with experimental results and critical exponent values are consistent with those suggested by the universality hypothesis. 相似文献
12.
A. Go K. Rećko L. Dobrzyński J.J. Milczarek M. Biernacka 《Journal of magnetism and magnetic materials》2012
In order to gain better insight into the origin of the observed differences between Fe3−xCrxAl and Fe3−xCrxSi, alloys of Fe3−xCrxAl0.5Si0.5 (x=0, 0.125, 0.250, 0.375 and 0.5) were prepared and studied by means of X-ray and neutron diffraction as well as by magnetization measurements. Electronic structure calculations of these alloys have been performed by means of TB-LMTO-ASA method. It was expected, and experimentally verified, that the presence of silicon and aluminum atoms in 1:1 proportion will result in the independence of the lattice parameter on the iron/chromium concentration. All samples have been proved to be a single phase of the DO3-type of structure. Theoretical and experimental results indicate that chromium atoms locate preferentially in B sublattice. Cr magnetic moments are oriented antiparallel to Fe magnetic moments. Neutron measurements show a linear dependence of the magnetic moments of Fe(A,C), Fe(B) and Cr(B) as a function of Cr concentration. However the calculated total magnetic moment decreases faster with chromium content than indicated by the experiment. 相似文献
13.
O. MounkachiM. Hamedoun M. Belaiche A. Benyoussef R. MasrourH. El Moussaoui M. Sajieddine 《Physica B: Condensed Matter》2012,407(1):27-32
Polycrystalline Mg0.6Cu0.4Fe2O4 ferrites have been prepared using solid-state reaction technique. Their structural and magnetic properties have been studied, using X-ray diffraction and magnetic measurements.Using mean field theory and high-temperature series expansions (HTSE), extrapolated with the padé approximants method, the magnetic properties of Mg1−xCuxFe2O4 have been studied. The nearest neighbor super-exchange interactions for intra-site and inter-site of the Mg1−xCuxFe2O4 ferrites spinels, in the range 0≤x≤1, have been computed using the probability approach, based on Mössbauer data. The Curie temperature Tc is calculated as a function of Mg concentration. The obtained theoretical results are in good agreement with experimental ones obtained by magnetic measurements. 相似文献
14.
We report novel pulsed laser deposition conditions that were used to obtain superconducting epitaxial YBCO thin films, grown in situ using an oxygen pressure lower than the usual one during the cool-down time. We studied the influence of the PLD conditions as substrate temperature, oxygen pressure, laser fluence, and number of laser pulses on the crystallographic and morphological features, and on the superconducting properties of the films. Good superconducting properties were obtained without a high temperature post-deposition annealing process. A maximum critical temperature of 88.6 K was obtained. 相似文献
15.
E.A MahmoudM.M El-Samanoudy A.S Abd Rabo 《Journal of Physics and Chemistry of Solids》2002,63(11):2003-2010
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers. 相似文献
16.
N. Dix J.M. Caicedo I. Fina V. Skumryev J. Guyonnet F. Sánchez J. Fontcuberta 《Journal of magnetism and magnetic materials》2009,321(11):1790-1794
BiFeO3-CoFe2O4 epitaxial nanocomposites have been deposited on SrTiO3 (0 0 1) substrates by pulsed laser deposition. We present here a study of the influence of the deposition temperature (TS), in the 550-800 °C range, on the film composition, morphology and microstructure. Electron-probe microanalysis shows strong reduction of the Bi content in the films when increasing TS. Films prepared at TS=750 °C and above are virtually Bi-free. X-ray diffraction (XRD) data show that, due to the volatility of Bi, there is a progressive reduction in the amount of BiFeO3. The deposition temperature and the concomitant presence of FexOy spurious phases in the nanocomposites grown at high temperature promote radical changes in film morphology and magnetization. It thus follows that a temperature range suitable for controlled modification of nanocomposites morphology would be extremely narrow. 相似文献
17.
The compositional and thermal dependencies of phase and electrical behaviour of compositions in the system Bi14W1 − xLaxO24 − 3x/2 (0.00 < x < 1.00) have been studied by X-ray powder diffraction, differential thermal analysis and a.c. impedance spectroscopy. The system exhibits polymorphism and phase separation, which shows both compositional and thermal dependence. Compositions with x = 0.25 and x = 0.50 exhibit a single phase tetragonal structure at room temperature. In contrast, the x = 0.75 composition at room temperature shows a mixture of a cubic phase and a secondary β-Bi2O3 related tetragonal phase. A full solid solution is observed at high temperatures, corresponding to the occurrence of a δ-Bi2O3 type phase. The appearance of the various phases correlates well with the observed electrical behaviour. The x = 0.75 composition exhibits exceptionally high conductivity at high temperatures (σ800 = 1.34 S cm− 1), but also shows significant phase separation at lower temperatures. 相似文献
18.
19.
Polycrystalline double perovskite LaNi1−xMnxO3 (x=0.3, 0.4, 0.5 and 0.7, which is defined as Mn03, Mn04, Mn05 and Mn07, respectively) thin films are successfully deposited on Si (1 0 0) substrates via chemical solution deposition method. Their structural and magnetic properties are measured. All the thin films are of single phase. Raman spectra indicate that relative intensity of Mn05 is stronger than that of others that can be attributed to the higher degree of B-site ordering. The low temperature magnetic moment of Mn05 is about 500 emu/cm3, which is obviously larger than that of Mn03 and Mn07 because of the long-range ordering of Mn and Ni ions in Mn05. 相似文献
20.
Polycrystalline thin films of Fe3−xZnxO4 (x = 0.0, 0.01 and 0.02) were prepared by pulsed-laser deposition technique on Si (1 1 1) substrate. X-ray diffraction studies of parent as well as Zn doped magnetite show the spinel cubic structure of film with (1 1 1) orientation. The order–disorder transition temperature for Fe3O4 thin film with thickness of 150 nm are at 123 K (Si). Zn doping leads to enhancement of resistivity by Zn2+ substitution originates from a decrease of the carrier concentration, which do not show the Verwey transition. The Raman spectra for parent Fe3O4 on Si (1 1 1) substrate shows all Raman active modes for thin films at energies of T2g1, T2g3, T2g2, and A1g at 193, 304, 531 and 668 cm−1. It is noticed that the frequency positions of the strongest A1g mode are at 668.3 cm−1, for all parent Fe3O4 thin film shifted at lower wave number as 663.7 for Fe2.98Zn0.02O4 thin film on Si (1 1 1) substrate. The integral intensity at 668 cm−1 increased significantly with decreasing doping concentration and highest for the parent sample, which is due to residual stress stored in the surface. 相似文献