共查询到20条相似文献,搜索用时 14 毫秒
1.
2.
3.
Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior in solid mechanics, to date there has been relatively little explicit identification of stress singularities caused by fluid flows. In this study, stress and pressure singularities induced by steady flows of viscous incompressible fluids are asymptotically identified. This is done by taking advantage of an earlier result that the Navier-Stokes equations are locally governed by Stokes flow in angular corners. Findings for power singularities are confirmed by developing and using an analogy with solid mechanics. This analogy also facilitates the identification of flow-induced log singularities. Both types of singularity are further confirmed for two global configurations by applying convergence-divergence checks to numerical results. Even though these flow-induced stress singularities are analogous to singularities in solid mechanics, they nonetheless render a number of structural configurations singular that were not previously appreciated as such from identifications within solid mechanics alone. 相似文献
4.
Necessary and sufficient conditions for the stability of flows of incompressible viscous fluids 总被引:6,自引:0,他引:6
Wolf von Wahl 《Archive for Rational Mechanics and Analysis》1994,126(2):103-129
Summary We perturb a steady flow of an incompressible viscous fluid and derive a necessary and sufficient condition for the marginal cases for monotonie energy stability and stability against small (infinitesimal) disturbances to coincide. Evaluation of this condition in two examples singles out, in terms of the parameters of the problem, the cases where necessary and sufficient conditions for stability coincide and thus the steady flow first becomes unstable, together with the class of perturbations responsible for the instability. The analysis is done within the range of strict solutions of each underlying problem; the precise regularity and existence classes are given in Sec. 0. The examples we treat are plane parallel shear flow with a non-symmetric profile in an infinite rotating layer and the effect of rotation on convection. 相似文献
5.
In this paper, we study the unsteady motion of inhomogeneous incompressible viscous fluids. We present the results corresponding to Stokes' second problem and for the flow between two parallel plates where one is oscillating. 相似文献
6.
7.
The paper's focus is the calculation of unsteady incompressible 2D flows past airfoils. In the framework of the primitive variable Navier–Stokes equations, the initial and boundary conditions must be assigned so as to be compatible, to assure the correct prediction of the flow evolution. This requirement, typical of all incompressible flows, viscous or inviscid, is often violated when modelling the flow past immersed bodies impulsively started from rest. Its fulfillment can however be restored by means of a procedure enforcing compatibility, consisting in a pre‐processing of the initial velocity field, here described in detail. Numerical solutions for an impulsively started multiple airfoil have been obtained using a finite element incremental projection method. The spatial discretization chosen for the velocity and pressure are of different order to satisfy the inf–sup condition and obtain a smooth pressure field. Results are provided to illustrate the effect of employing or not the compatibility procedure, and are found in good agreement with those obtained with a non‐primitive variable solver. In addition, we introduce a post‐processing procedure to evaluate an alternative pressure field which is found to be more accurate than the one resulting from the projection method. This is achieved by considering an appropriate ‘unsplit’ version of the momentum equation, where the velocity solution of the projection method is substituted. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
The three-dimensional Navier-Stokes equations for viscous incompressible fluids are discretized on staggered or non-staggered grids. The system of finite-difference equations is solved by a multi-grid method. The method and some possible sources of difficulties and their remedies are described. The numerical algorithm has been applied to the computations of flows in ducts for a range of Reynolds numbers up to 2000. As outflow boundary conditions, either the fully developed flow profile (Dirichlet condition) or parabolic conditions have been applied. The multi-grid method has a fast rate of convergence (with both types of boundary conditions), and it is not sensitive to the number of mesh points and the Reynolds number. The numerical solution, using parabolic boundary conditions, is insensitive to the location of the outflow boundary, even for large Reynolds numbers, in contrast to the solution with Dirichlet boundary conditions. 相似文献
9.
R. M. Sattarov 《Journal of Applied Mechanics and Technical Physics》1975,16(3):425-429
Differential equations are derived and the hydraulic impact process for “exponential” and nonlinearly viscoplastic media in pipes made of a viscoelastic material is analyzed. Hydraulic impact problems for actual media in pipes has been repeatedly treated in the literature [1–4]. The hydraulic impact of a viscous and linearly viscoplastic media in pipes made of an elastic and viscoelastic material was studied in this work. It is well known [5] that many media in the region of low and moderate shear rates reveal a nonlinearity of the flow curve (oil, drilling fluids, polymer solutions and melts, loaded fuels, fuel mixtures, blood, etc.). It should be noted that flexible pipes made of natural materials (pipe boreholes made of polymer materials, membranes of blood vessels, etc.) are described by complicated rheological equations of state for viscoelastic media. Thus a calculation of the influence of nonlinearity of these media and of the viscoelastic properties of the pipe material on the hydraulic impact process is of theoretical and practical interest in many engineering problems. 相似文献
10.
11.
V. N. Monakhov M. I. Zhidkova 《Journal of Applied Mechanics and Technical Physics》2005,46(2):185-190
This paper deals with a theoretical analysis of the transfer of reactive impurities by open and filtration flows of an incompressible viscous fluid. The first section of the paper studies the model of an inhomogeneous incompressible viscous fluid, which is widely used in meteorology and oceanology, with additional allowance for the drag of the magnetic field or porous medium. Another object of research in this paper is the model of filtration of an inhomogeneous incompressible fluid in porous media proposed by V. N. Monakhov (1977) (Section 2). In both models, hydrodynamic flows determine the motion of the mixture as a whole and the temperature and concentration distributions of the components of an inhomogeneous fluid are described by a common nonlinear system of equations of diffusive heat and mass transfer.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 44–51, March–April, 2005. 相似文献
12.
Summary This paper analyzes some basic viscous flows of micropolar fluids. The problems ofCouette andPoiseuille flows between two parallel plates and a rotating fluid with a free surface, are solved using the theory of micropolar fluids. The results are presented graphically and compared with the classical ones, and the differences are discussed. 相似文献
13.
Most authors use the stream function for the calculation of two-dimensional viscous incompressible fluid flows. The velocity field is determined by numerical differentiation, which reduces the computation accuracy significantly. In the following we study steady viscous fluid flow fay a method which makes it possible to avoid this drawback; in this case the problem of the Navier-Stokes equations reduces to a different equivalent problem: an implicit finite-difference scheme constructed on the basis of the results of [1, 2] is proposed for the numerical solution of the resulting system of equations. 相似文献
14.
A time-accurate solution method for the incompressible Navier-Stokes equations in generalized moving coordinates is presented. A finite volume discretization method that satisfies the geometric conservation laws for time-varying computational cells is used. The discrete equations are solved by a fractional step solution procedure. The solution is second-order-accurate in space and first-order-accurate in time. The pressure and the volume fluxes are chosen as the unknowns to facilitate the formulation of a consistent Poisson equation and thus to obtain a robust Poisson solver with favourable convergence properties. The method is validated by comparing the solutions with other numerical and experimental results. Good agreement is obtained in all cases. 相似文献
15.
G. Nath 《Rheologica Acta》1976,15(5):209-214
Summary The solution of the steady laminar incompressible nonsimilar boundary-layer problem for micropolar fluids over two-dimensional and axisymmetric bodies has been presented. The partial differential equations governing the flow have been transformed into new co-ordinates having finite range. The resulting equations have been solved numerically using implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The results indicate that the separation in micropolar fluids occurs at earlier streamwise locations as compared to Newtonian fluids. The skin friction and velocity profiles depend on the shape of the body and are almost insensitive to microrotation or coupling parameter, provided the coupling parameter is small. On the other hand, the microrotation profiles and microrotation gradient depend on the microrotation parameter and they are insensitive to the coupling parameter.
With 6 figures 相似文献
Zusammenfassung Es wird die Lösung des stationären Grenzschichtproblems inkompressibler mikropolarer Flüssigkeiten für den Fall der Nichtähnlichkeit bei zweidimensionalen und achsensymmetrischen Körpern vorgelegt. Die dem Problem zugrunde liegenden partiellen Differentialgleichungen werden durch Einführung neuer Koordinaten auf ein endliches Gebiet transformiert. Die so erhaltenen Gleichungen werden mit Hilfe eines impliziten Differenzenverfahrens numerisch gelöst. Die Rechnung wird für den Zylinder und die Kugel durchgeführt. Die Ergebnisse zeigen, daß die Grenzschichtablösung früher erfolgt als bei vergleichbaren newtonschen Flüssigkeiten. Wandreibung und Geschwindigkeitsprofile hängen von der Gestalt des Körpers ab und sind nahezu unempfindlich gegen Mikrorotation und Kopplungsparameter, vorausgesetzt, daß der letztere klein ist. Dagegen hängen das Profil und der Gradient der Mikrorotation vom Parameter der Mikrorotation ab und sind ebenfalls unempfindlich gegen die Kopplungsparameter.
With 6 figures 相似文献
16.
The problem of establishing appropriate conditions for the vorticity transport equation is considered. It is shown that, in viscous incompressible flows, the boundary conditions on the velocity imply conditions of an integral type on the vorticity. These conditions determine a projection of the vorticity field on the linear manifold of the harmonic vector fields. Some computational consequences of the above result in two-dimensional calculations by means of the nonprimitive variables, stream function and vorticity, are examined. As an example of the application of the discrete analogue of the projection conditions, numerical solutions of the driven cavity problem are reported. 相似文献
17.
M. Sedl 《国际流体数值方法杂志》1993,16(11):953-966
This paper discusses the calculation of quasi-three-dimensional incompressible viscous flow by FEM. The Reynolds-averaged Navier-Stokes equations are solved in curvilinear co-ordinates by the reduced integration and penalty method (RIP). Streamline upwind artificial viscosity (SUAV) and the Baldwin-Lomax algebraic model of turbulence are used. Time discretization is by the general implicit θ-method. 相似文献
18.
《Particuology》2017
A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal particles is used in the discrete element method. Instead of a collision model of circular particles, the collision model used in our method can deal with particles of more complex shape and efficiently simulate the effects of shape on particle–particle and particle–wall interactions. For two particles falling under gravity, because of the edges and corners, different collision patterns for circular and polygonal particles are found in our simulations. The complex vortexes generated near the corners of polygonal particles affect the flow field and lead to a difference in particle motions between circular and polygonal particles. For multiple particles falling under gravity, the polygonal particles easily become stuck owing to their corners and edges, while circular particles slip along contact areas. The present method provides an efficient approach for understanding the effects of particle shape on the dynamics of non-circular particles in fluids. 相似文献
19.
Within multivariant elements, which have restricted degrees of freedom at some nodes, different velocity components have different variations. Shape functions for the multivariant elements Q Po and R Po are developed. With such shape functions the value of a velocity component within a multivariant element is shown to depend upon all the independent components of velocity at the nodes of the element. The use of the Q1 P0 element to simulate flows with discontinuous boundary conditions generated disturbance throughout the flow domain, giving erroneous pressure and velocity distributions. The Q Po element restricted the disturbance due to such discontinuities to a small region near the singular points, whereas the P Po element completely eliminated the fluctuations. Flows with discontinuous boundary conditions were simulated with reasonable accuracy by partially relaxing the no-slip condition on the Q1 Po elements near the singular points. 相似文献
20.
V. N. Monakhov N. V. Khusnutdinova 《Journal of Applied Mechanics and Technical Physics》1995,36(1):86-90
Novosibirsk. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 1, pp. 95–99, January–February, 1995. 相似文献