首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Silver and gold organosols are easily prepared by transferring nanoparticles from aqueous phase into isooctane with high efficiency (>90%). Concentrations of sodium oleate and magnesium chloride have crucial effects on the transfer efficiency. Based on the UV-visible absorption spectra, TEM micrographs of nanoparticles, as well as molecular modeling calculation about the adsorption conformation of sodium oleate molecules, a possible phase transfer mechanism is proposed.  相似文献   

2.
Multiple-walled carbon nanotubes were functionalized by cycloaddition of dichlorocarbene.The chemical modification was performed by using chloroform and sodium hydroxide.Various phase transfer catalysts were used to increase the efficiency of the reaction.Benzyltriethylammonium chloride used as phase transfer catalyst could highly enhance the effect of functionalization.Elemental analysis was used to evaluate the degree of functionalization.Characterization was performed using scanning electron microscopy(SEM)and transmission electron microscopy(TEM).Fourier transform infrared spectroscopy(FTIR)and energy-dispersive X-ray spectroscopy(EDS)were used to confirm the resulting material.  相似文献   

3.
Metalloporphyrins and crown ether groups were simultaneously supported on chloromethylated polystyrene resin to produce a series of polymer-supported catalysts. The synthesis of these catalysts has been studied. The influence of pH, concentrations of NaOCl and phase transfer catalysts on the epoxidation of styrene catalyzed by these catalysts has also been investigated. The experimental results show that manganese(Ⅲ) porphyrin bound to chloromethylated polystyrene which bears crown ether groups is effective catalysts for the epoxidation of styrene by sodium hypochlorite. The introduction of crown ether groups increases the catalytic efficiency of supported metalloporphyrins. The kinetics of epoxidation catalyzed by supported manganese(Ⅲ) porphyrins obeys Michaelis-Menten equation-the characteristic of enzyme-driven reaction.  相似文献   

4.
A highly effective phase transfer of a quaternary ammonium gemini surfactant with ester groups((diethylhexanedioate) diyl-a,v-bis(dimethyl dodecyl ammonium bromide) referred to as 12-10-12)was synthesized with high yield and characterized by infrared spectroscopy, elemental analysis and1 HNMR. Then, 12-10-12 was used as a phase transfer catalyst to study the catalytic effect on the reaction of anhydrous sodium acetate and 4-methylbenzyl chloride. The possible catalytic mechanism and the influence of surfactant concentration, temperature and type are also discussed. The experimental results showed that the catalysis efficiency was more active than the traditional, single-chained surfactant,tetrabutyl ammonium bromide. It also revealed that the reaction was first-order with respect to the concentration of 4-methylbenzyl chloride. The concentration of 4-methylbenzyl chloride grew linearly with the concentration of 12-10-12 and as the reaction temperature increased. The optimum reaction time was 7 h.  相似文献   

5.
The transfer phenomena of quinine drug at the aqueous 1,2- dichloroethane (DCE)interface have been studied by the current- scanning polarography. The relationships be-tween the wave height and pH of aqueous phase, concentration of quinine as well as therate of water drop are discussed. The effect of supporting electrolyte, buffer solution andthe nature of organic solvent on the polarographic wave is studied. The transfer char-acteristics of quinine in aqueous phase and in organic phase are compared, The mono- pro-tonated and diprotonated quinines can both transfer at the interface so as to produce twopolarographic waves. The transfer process of quinine at the interface is simultaneouslycontrolled by diffusion and reestablishment of the disturbed protonated equilibrium ofquinine. A further investigation is made by chronopotentiometry. On the basis of thetheoretical analysis, the formulae of the limiting current are derived and discussed. Thetheoretical results are in agreement with the experimental ones.  相似文献   

6.
In this paper, the ion transfer process of bromocresol purple(BCP) across the liquid/liquid interface has been described. The effects of the supporting eletrolyte in two phases and solvent on the transfer behavior of bromocresol purple have been investigated in detail and the relationship between the ion transfer and concentration of electrolytes in the organic phase is explained in terms of the dissociation of TBA~+ anti TPB~- in the organic phase. The proposed transfer mechanism for BCP has been proved to be reasonable by UV-spectroscopy of the products of the electrolysis in aqueous phase. The standard potential differences △_0~wφ~0 and standard Gibbs energies △_0~WG~0 of BCP transfer from water to some organic solvents are calculated. The dissociation constants of BCP obtained are in agreement with the literature values.  相似文献   

7.
Alkaline hydrazine liquid fuel cells(AHFC) have been highlighted in terms of high power performance with non-precious metal catalysts.Although Fe-N-C is a promising non-Pt electrocatalyst for oxygen reduction reaction(ORR),the surface density of the active site is very low and the catalyst layer should be thick to acquire the necessary number of catalytic active sites.With this thick catalyst layer,it is important to have an optimum pore structure for effective reactant conveyance to active sites and an interface structure for faster charge transfer.Herein,we prepare a Fe-N-C catalyst with magnetite particles and hierarchical pore structure by steam activation.The steam activation process significantly improves the power performance of the AHFC as indicated by the lower IR and activation voltage losses.Based on a systematic characterization,we found that hierarchical pore structures improve the catalyst utilization efficiency of the AHFCs,and magnetite nanoparticles act as surface modifiers to reduce the interracial resistance between the electrode and the ion-exchange membrane.  相似文献   

8.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

9.
孙昭艳 《高分子科学》2014,32(3):255-267
The effect of silica nanoparticles on the morphology of (10/90 wt%) PDMS/PBD blends during the shear induced coalescence of droplets of the minor phase at low shear rate was investigated systematically in situ by using an optical shear technique. Two blending procedures were used: silica nanoparticles were introduced to the blends by pre-blending silica particles first in PDMS dispersed phase (procedure 1) or in PBD matrix phase (procedure 2). Bimodal or unimodal droplet size distributions were observed for the filled blends during coalescence, which depend not so much on the surface characteristics of silica but mainly on blending procedure. For pure (10/90 wt%) PDMS/PBD blend, the droplet size distribution exhibits bimodality during the early coalescence. When silica nanoparticles (hydrophobic and hydrophilic) were added to the blends with procedure l, bimodal droplet size distributions disappear and unimodal droplet size distributions can be maintained during coalescence; the shape of the different peaks is invariably Gaussian. Simultaneously, coalescence of the PDMS droplets was suppressed efficiently by the silica nanoparticles. It was proposed that with this blending procedure the nanoparticles should be mainly kinetically trapped at the interface or in the PDMS dispersed phase, which provides an efficient steric barrier against coalescence of the PDMS dispersed phase. However, bimodal droplet size distributions in the early stage of coalescence still occur when incorporating silica nanoparticles into the blends with procedure 2, and then coalescence of the PDMS droplets cannot be suppressed efficiently by the silica nanoparticles. It was proposed that with this blending protocol the nanoparticles should be mainly located in the PBD matrix phase, which leads to an inefficient steric barrier against coalescence of the PDMS dispersed phase; thus the morphology evolution in these filled blends is similar to that in pure blend and bimodal droplet size distributions can be observed during the early coalescence. These results imply that exploiting non-equilibrium processes by varying preparation protocol may provide an elegant route to regulate the temporal morphology of the filled blends during coalescence.  相似文献   

10.
The TiO2 gel doped with UO22 and Eu3 has been prepared by a sol-gel method. The quenching of the UO22 emission by Eu3 and the energy transfer from the excited state of UO22 to the ground state of Eu3 have been investigated. The energy transfer has been studied by the measurement of luminescence lifetime τ, calculations of energy transfer efficiency ηET and energy transfer rate WET. The experimental results indicated that the quenching is combined static and dynamic mechanism, but the static mechanism is dominant.  相似文献   

11.
相转移方法制备银纳米粒子单层膜   总被引:8,自引:0,他引:8  
在油酸钠保护下用NaBH_4还原AgNO_3,制得了银纳料粒子胶体溶液。利用相转 移剂NaH_2PO_4等,使Ag纳料粒子在水/朋机相界面之间形成薄膜。形成的Ag纳料 粒子膜可以转移到玻璃等基质上,讨论了其转移机理;并用石英晶体微天平(QCM )宣检测了银纳料粒子的相转移量。  相似文献   

12.
Highly hydroxylated barium titanate (BaTiO(3)) nanoparticles have been prepared via an easy and gentle approach which oxidizes BaTiO(3) nanoparticles using an aqueous solution of hydrogen peroxide (H(2)O(2)). The hydroxylated BaTiO(3) surface reacts with sodium oleate (SOA) to form oleophilic layers that greatly enhance the dispersion of BaTiO(3) nanoparticles in organic solvents such as tetrahydrofuran, toluene, and n-octane. The results of Fourier transform infrared spectroscopy confirmed that the major functional groups on the surface of H(2)O(2)-treated BaTiO(3) nanoparticles are hydroxyl groups which are chemically active, favoring chemical bonding with SOA. The results of transmission electron microscopy of SOA-modified BaTiO(3) nanoparticles suggested that the oleate molecules were bonded to the surfaces of nanoparticles and formed a homogeneous layer having a thickness of about 2 nm. Furthermore, the improved dispersion capability of the modified BaTiO(3) nanoparticles in organic solvents was verified through analytic results of its settling and rheological behaviors.  相似文献   

13.
In this report, we investigate the nanoparticle formation between random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) and oppositely charged natural surfactants, sodium oleate and sodium laurate, using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Though sodium oleate and sodium laurate are sparingly soluble in water, the nanoparticle complexes formed between the RCPs and these surfactants are soluble in the entire range of compositions studied here, including the stoichiometric electronetural complexes. The spherical nature of these nanoparticle complexes is revealed by electron microscopic (EM) analysis. Dynamic light scattering (DLS) showed that the average diameters of the nanoparticles are in the range 50 to 150 nm, which is supported by EM analysis. Pyrene fluorescence experiments suggested that these soluble nanoparticles have hydrophobic cores, which may solubilize hydrophobic drug molecules. The polarity index (I(1)/I(3)) obtained from the pyrene fluorescence spectra and the conductometric measurements showed that the critical concentration of fatty acid salts needed to obtain nanoparticles are in the order of 10(-4) M. Further, the complexation of such poorly water-soluble amphiphilic surfactants with polymers offers a useful method for the immobilization of hydrophobic compounds towards water-soluble drug carrier formulations. The formation of water-soluble nanoparticles by the self-assembly of fatty acid salts upon interacting with oppositely charged poly(ethylene glycol)-based polyions.  相似文献   

14.
This paper describes the formation of water-dispersible gold nano-particles capped with a bilayer of sodium dodecylsulphate (SDS) and octadecylamine (ODA) molecules. Vigorous shaking of abiphasic mixture consisting of ODA-capped gold nanoparticles in chloroform and SDS in water results in the rapid phase transfer of ODA-capped gold nanoparticles from the organic to the aqueous phase, the latter acquiring a pink, foam-like appearance in the process. Drying of the coloured aqueous phase results in the formation of a highly stable, reddish powder of gold nanoparticles that may be readily redispersed in water. The water-dispersible gold nanoparticles have been investigated by UV-Vis spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). These studies indicate the presence of interdigitated bilayers consisting of an ODA primary monolayer directly coordinated to the gold nanoparticle surface and a secondary monolayer of SDS, this secondary monolayer providing sufficient hydrophilicity to facilitate gold nanoparticle transfer into water and rendering them water-dispersible. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

15.
Stable dispersions of colloidal metals in hydrocarbons have been prepared by a novel phase-transfer method. The metals were gold, silver, palladium and ruthenium; the hydrocarbons were n-hexane, cyclohexane and benzene. The phase transfer of colloidal metal particles from an aqueous phase to a hydrocarbon phase was achieved by adding salt to the emulsion of hydrocarbon in the aqueous suspension of metal with sodium oleate. The salts were sodium chloride, magnesium chloride, sodium sulfate, etc. The size distributions of the metal particles in the resulting hydrocarbon suspensions were almost the same as that of the original aqueous suspension. The dispersions of colloidal metals in hydrocarbons were stable for a long period of time without the addition of hydrocarbon-soluble stabilizer. The critical phase-transfer concentrations of various salts were determined. The phase-transfer powers of cations were larger than those of anions. Those of divalent and trivalent cations were exceedingly larger than that of the monovalent cation. The concentration of colloidal metal dispersed in hydrocarbon was achieved by using the phase-transfer method.  相似文献   

16.
以醋酸锌和氯化锡为原料,以聚甲基丙烯酸钠(PMA)为表面活性剂,利用水热法合成了偏锡酸锌(ZnSnO3)纳米微粒;采用X射线衍射仪、傅立叶变换红外光谱仪、扫描电镜等分析了ZnSnO3纳米微粒的晶相、表面组成、形貌;并测定了ZnSnO3纳米微粒对甲基橙溶液的光催化降解性能.结果表明,所得ZnSnO3纳米微粒粒径约为20nm,表面存在羧基;其对pH=2的甲基橙溶液的光催化降解效果较好,甲基橙的初始浓度越低,降解效果越明显;随着催化剂用量的增加,降解效率逐渐增大.此外,循环催化试验结果表明ZnSnO3纳米微粒具有较好的催化稳定性.  相似文献   

17.
This paper describes a general method to change the surface property of the oleic acid stabilized silver nanoparticles and successful tranferring of the silver nanoparticles from the organic phase into the aqueous phase. By vigorous shaking of a biphasic mixture of the silver organosol protected with oleic acid and p-sulfonated calix[4]arene (pSC4) aqueous solution, it is believed that an inclusion complex is formed between oleic acid molecules and pSC4, and the protective layer of the silver nanoparticles shifts from hydrophobic to hydrophilic in nature, which drives the transfer of silver nanoparticles from the organic phase into the aqueous phase. The efficiency of the phase transfer to the aqueous solution depends on the initial pSC4 concentration. The pSC4-oleic acid inclusion complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. The procedure of phase transfer has been independently verified by UV-vis, transmission electron microscopy, Fourier transform infrared, and 1H nuclear magnetic resonance techniques.  相似文献   

18.
Monodisperse superparamagnetic iron oxide nanoparticles of controlled size were synthesized by thermal decomposition of organic iron compounds in different high-boiling solvents in the presence of oleic acid and/or oleylamine. The compounds included Fe(III) oleate and mandelate, formed from FeCl3 and the respective acids. The size of the nanoparticles was easily tuned to 8–27 nm by varying the experimental conditions. The nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and magnetization measurements. The hydrophobic coating of the particles was analyzed by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). To make the particles biocompatible and water dispersible, nontoxic hydrophilic poly(ethylene glycol) derivatives were synthesized and used for phase transfer of hydrophobic particles into water using a ligand-exchange procedure.  相似文献   

19.
In this work, the binding between sodium oleate (SO), sodium laurate (SL), sodium dodecyl sulfate (SDS), and sodium dodecylphosphonate (SDP) and iron oxide nanoparticles was systematically investigated using isothermal titration calorimetry (ITC). Comparing the heat exchanged during the isothermal titration with the corresponding surfactant adsorption isotherm, in the cases of SO and SDP, a strong binding takes place at low surfactant concentrations. The binding enthalpy at this low surfactant concentrations depends on the type of surfactant anionic head group. For C12 surfactants, the phosphonate group produced the strongest endothermic binding, followed by the exothermic binding with the carboxylate group, followed by weak exothermic interaction with the sulfate group. For carboxylate surfactants, longer surfactant tails result in larger exothermic binding. Surfactants that exhibited large binding enthalpies also produced more stable suspensions. The Langmuir (L), Freundlich (F), and Langmuir–Freundlich (L–F) adsorption models were used to interpret the adsorption isotherms during the titration with sodium oleate. The L–F adsorption isotherm model was selected to calculate the heat of the formation of the SO monolayer and bilayer on the iron oxide nanoparticles. The L–F model reflects the finite or limited adsorption of the Langmuir model, but accounts for non-homogeneous adsorption of the Freundlich model that help account for surfactant self-assembly before and after adsorption. Coupling the adsorption model with the titration data is possible to calculate the real heat of adsorption of the surfactants on the metal oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号