首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This paper completes our previous discussion on the total least squares (TLS) and the least squares (LS) problems for the linear systemAX=B which may contain more than one solution [12, 13], generalizes the work of Golub and Van Loan [1,2], Van Huffel [8], Van Huffel and Vandewalle [11]. The TLS problem is extended to the more general case. The sets of the solutions and the squared residuals for the TLS and LS problems are compared. The concept of the weighted squares residuals is extended and the difference between the TLS and the LS approaches is derived. The connection between the approximate subspaces and the perturbation theories are studied.It is proved that under moderate conditions, all the corresponding quantities for the solution sets of the TLS and the modified LS problems are close to each other, while the quantities for the solution set of the LS problem are close to the corresponding ones of a subset of that of the TLS problem.This work was financially supported by the Education Committee, People's Republic of China  相似文献   

2.
Summary. The standard approaches to solving overdetermined linear systems construct minimal corrections to the data to make the corrected system compatible. In ordinary least squares (LS) the correction is restricted to the right hand side c, while in scaled total least squares (STLS) [14,12] corrections to both c and B are allowed, and their relative sizes are determined by a real positive parameter . As , the STLS solution approaches the LS solution. Our paper [12] analyzed fundamentals of the STLS problem. This paper presents a theoretical analysis of the relationship between the sizes of the LS and STLS corrections (called the LS and STLS distances) in terms of . We give new upper and lower bounds on the LS distance in terms of the STLS distance, compare these to existing bounds, and examine the tightness of the new bounds. This work can be applied to the analysis of iterative methods which minimize the residual norm, and the generalized minimum residual method (GMRES) [15] is used here to illustrate our theory. Received July 20, 2000 / Revised version received February 28, 2001 / Published online July 25, 2001  相似文献   

3.
Summary. The standard approaches to solving overdetermined linear systems construct minimal corrections to the vector c and/or the matrix B such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to c, while in data least squares (DLS) it is restricted to B. In scaled total least squares (STLS) [22], corrections to both c and B are allowed, and their relative sizes depend on a real positive parameter . STLS unifies several formulations since it becomes total least squares (TLS) when , and in the limit corresponds to LS when , and DLS when . This paper analyzes a particularly useful formulation of the STLS problem. The analysis is based on a new assumption that guarantees existence and uniqueness of meaningful STLS solutions for all parameters . It makes the whole STLS theory consistent. Our theory reveals the necessary and sufficient condition for preserving the smallest singular value of a matrix while appending (or deleting) a column. This condition represents a basic matrix theory result for updating the singular value decomposition, as well as the rank-one modification of the Hermitian eigenproblem. The paper allows complex data, and the equivalences in the limit of STLS with DLS and LS are proven for such data. It is shown how any linear system can be reduced to a minimally dimensioned core system satisfying our assumption. Consequently, our theory and algorithms can be applied to fully general systems. The basics of practical algorithms for both the STLS and DLS problems are indicated for either dense or large sparse systems. Our assumption and its consequences are compared with earlier approaches. Received June 2, 1999 / Revised version received July 3, 2000 / Published online July 25, 2001  相似文献   

4.
Summary In this paper the closeness of the total least squares (TLS) and the classical least squares (LS) problem is studied algebraically. Interesting algebraic connections between their solutions, their residuals, their corrections applied to data fitting and their approximate subspaces are proven.All these relationships point out the parameters which mainly determine the equivalences and differences between the two techniques. These parameters also lead to a better understanding of the differences in sensitivity between both approaches with respect to perturbations of the data.In particular, it is shown how the differences between both approaches increase when the equationsAXB become less compatible, when the length ofB orX is growing or whenA tends to be rank-deficient. They are maximal whenB is parallel with the singular vector ofA associated with its smallest singular value. Furthermore, it is shown how TLS leads to a weighted LS problem, and assumptions about the underlying perturbation model of both techniques are deduced. It is shown that many perturbation models correspond with the same TLS solution.Senior Research Assistant of the Belgian N.F.W.O. (National Fund of Scientific Research)  相似文献   

5.
The perturbation analysis of weighted and constrained rank‐deficient linear least squares is difficult without the use of the augmented system of equations. In this paper a general form of the augmented system is used to get simple perturbation identities and perturbation bounds for the general linear least squares problem both for the full‐rank and rank‐deficient problem. Perturbation identities for the rank‐deficient weighted and constrained case are found as a special case. Interesting perturbation bounds and condition numbers are derived that may be useful when considering the stability of a solution of the rank‐deficient general least squares problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The problem of polynomial least squares fitting in which the usual monomial basis is replaced by the Bernstein basis is considered. The coefficient matrix of the overdetermined system to be solved in the least squares sense is then a rectangular Bernstein-Vandermonde matrix. In order to use the method based on the QR decomposition of A, the first stage consists of computing the bidiagonal decomposition of the coefficient matrix A. Starting from that bidiagonal decomposition, an algorithm for obtaining the QR decomposition of A is the applied. Finally, a triangular system is solved by using the bidiagonal decomposition of the R-factor of A. Some numerical experiments showing the behavior of this approach are included.  相似文献   

7.
Under the Golub-Van Loan condition for the existence and uniqueness of the scaled total least squares (STLS) solution, a first order perturbation estimate for the STLS solution and upper bounds for condition numbers of a STLS problem have been derived by Zhou et al. recently. In this paper, a different perturbation analysis approach for the STLS solution is presented. The analyticity of the solution to the perturbed STLS problem is explored and a new expression for the first order perturbation estimate is derived. Based on this perturbation estimate, for some STLS problems with linear structure we further study the structured condition numbers and derive estimates for them. Numerical experiments show that the structured condition numbers can be markedly less than their unstructured counterparts.  相似文献   

8.
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an efficient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear systems arising during the Newton iterations. The work of the second author was partially supported by a National Science Foundation Postdoctoral Research Fellowship.  相似文献   

9.
In this paper a method of estimating the optimal backward perturbation bound for the linear least squares problem is presented. In contrast with the optimal bound, which requires a singular value decomposition, this method is better suited for practical use on large problems since it requiresO(mn) operations. The method presented involves the computation of a strict lower bound for the spectral norm and a strict upper bound for the Frobenius norm which gives a gap in which the optimal bounds for the spectral and the Frobenius norm must be. Numerical tests are performed showing that this method produces an efficient estimate of the optimal backward perturbation bound.  相似文献   

10.
Summary Total Least Squares (TLS) is an estimation method for the solutiona of the linear system when both data sets and are subject to error. The TLS-method minimizes the functional with weighting parameter . In this paper the TLS-functional is analyzed by the technique of Lagrangian multipliers. The main part of the work deals with the case when the estimatea is restricted by an inequality of the formD ab0, D a diagonal matrix. It is shown that there exists a unique estimatea if the weighting parameter is chosen sufficiently large.  相似文献   

11.
In many linear parameter estimation problems, one can use the mixed least squares–total least squares (MTLS) approach to solve them. This paper is devoted to the perturbation analysis of the MTLS problem. Firstly, we present the normwise, mixed, and componentwise condition numbers of the MTLS problem, and find that the normwise, mixed, and componentwise condition numbers of the TLS problem and the LS problem are unified in the ones of the MTLS problem. In the analysis of the first‐order perturbation, we first provide an upper bound based on the normwise condition number. In order to overcome the problems encountered in calculating the normwise condition number, we give an upper bound for computing more effectively for the MTLS problem. As two estimation techniques for solving the linear parameter estimation problems, interesting connections between their solutions, their residuals for the MTLS problem, and the LS problem are compared. Finally, some numerical experiments are performed to illustrate our results.  相似文献   

12.
We present an algorithm for mixed precision iterative refinement on the constrained and weighted linear least squares problem, the CWLSQ problem. The approximate solution is obtained by solving the CWLSQ problem with the weightedQR factorization [6]. With backward errors for the weightedQR decomposition together with perturbation bounds for the CWLSQ problem we analyze the convergence behaviour of the iterative refinement procedure.In the unweighted case the initial convergence rate of the error of the iteratively refined solution is determined essentially by the condition number. For the CWLSQ problem the initial convergence behaviour is more complicated. The analysis shows that the initial convergence is dependent both on the condition of the problem related to the solution,x, and the vector =Wr, whereW is the weight matrix andr is the residual.We test our algorithm on two examples where the solution is known and the condition number of the problem can be varied. The computational test confirms the theoretical results and verifies that mixed precision iterative refinement, using the system matrix and the weightedQR decomposition, is an effective way of improving an approximate solution to the CWLSQ problem.  相似文献   

13.
The spectral and Jordan structures of the Web hyperlink matrix G(c)=cG+(1−c)evT have been analyzed when G is the basic (stochastic) Google matrix, c is a real parameter such that 0<c<1, v is a nonnegative probability vector, and e is the all-ones vector. Typical studies have relied heavily on special properties of nonnegative, positive, and stochastic matrices. There is a unique nonnegative vector y(c) such that y(c)TG(c)=y(c)T and y(c)Te=1. This PageRank vector y(c) can be computed effectively by the power method.We consider a square complex matrix A and nonzero complex vectors x and v such that Ax=λx and vx=1. We use standard matrix analytic tools to determine the eigenvalues, the Jordan blocks, and a distinguished left λ-eigenvector of A(c)=cA+(1−c)λxv as a function of a complex variable c. If λ is a semisimple eigenvalue of A, there is a uniquely determined projection N such that limc→1y(c)=Nv for all v; this limit may fail to exist for some v if λ is not semisimple. As a special case of our results, we obtain a complex analog of PageRank for the Web hyperlink matrix G(c) with a complex parameter c. We study regularity, limits, expansions, and conditioning of y(c) and we propose algorithms (e.g., complex extrapolation, power method on a modified matrix etc.) that may provide an efficient way to compute PageRank also with c close or equal to 1. An interpretation of the limit vector Nv and a related critical discussion on the model, on its adherence to reality, and possible ways for its improvement, represent the contribution of the paper on modeling issues.  相似文献   

14.
Summary A new method for discrete least squares linearized rational approximation is presented. It generalizes the algorithm of Rutishauser-Gragg-Harrod-Reichel for discrete least squares polynomial approximation to the rational case. The algorithm is fast in the sense that it requires orderm computation time wherem is the number of data points and is the degree of the approximant. We describe how this algorithm can be implemented in parallel.  相似文献   

15.
16.
A classical perturbation result for nonsingular systems of linear algebraic equations is extended to general consistent systems under any norm. An optimal perturbation result is also obtained for general linear least squares problems under a Euclidean norm.  相似文献   

17.
A backward error for inverse singular value problems with respect to an approximate solution is defined, and an explicit expression for the backward error is derived by extending the approach described in [J.G. Sun, Backward errors for the inverse eigenvalue problem, Numer. Math. 82 (1999) 339-349]. The expression may be useful for testing the stability of practical algorithms.  相似文献   

18.
In this paper, some new properties of the equality constrained and weighted least squares problem (WLSE) min W1/2(Kxg)2 subject to Lx=h are obtained. We derive a perturbation bound based on an unconstrained least squares problem and deduce some equivalent formulae for the projectors of this unconstrained LS problem. We also present a new way to compute the minimum norm solution xWLSE of the WLSE problem by using the QR decomposition of the corresponding matrices and propose an algorithm to compute xWLSE using the QR factorizations. Some numerical examples are provided to compare different methods for solving the WLSE problem.  相似文献   

19.
We consider solving eigenvalue problems or model reduction problems for a quadratic matrix polynomial 2 −  − B with large and sparse A and B. We propose new Arnoldi and Lanczos type processes which operate on the same space as A and B live and construct projections of A and B to produce a quadratic matrix polynomial with the coefficient matrices of much smaller size, which is used to approximate the original problem. We shall apply the new processes to solve eigenvalue problems and model reductions of a second order linear input-output system and discuss convergence properties. Our new processes are also extendable to cover a general matrix polynomial of any degree.  相似文献   

20.
The standard approaches to solving an overdetermined linear system Ax ≈ b find minimal corrections to the vector b and/or the matrix A such that the corrected system is consistent, such as the least squares (LS), the data least squares (DLS) and the total least squares (TLS). The scaled total least squares (STLS) method unifies the LS, DLS and TLS methods. The classical normwise condition numbers for the LS problem have been widely studied. However, there are no such similar results for the TLS and the STLS problems. In this paper, we first present a perturbation analysis of the STLS problem, which is a generalization of the TLS problem, and give a normwise condition number for the STLS problem. Different from normwise condition numbers, which measure the sizes of both input perturbations and output errors using some norms, componentwise condition numbers take into account the relation of each data component, and possible data sparsity. Then in this paper we give explicit expressions for the estimates of the mixed and componentwise condition numbers for the STLS problem. Since the TLS problem is a special case of the STLS problem, the condition numbers for the TLS problem follow immediately from our STLS results. All the discussions in this paper are under the Golub-Van Loan condition for the existence and uniqueness of the STLS solution. Yimin Wei is supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Science & Technology Committee under grant 08DZ2271900 and Shanghai Education Committee under grant 08SG01. Sanzheng Qiao is partially supported by Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University during his visiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号