首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We construct monotone numerical schemes for a class of nonlinear PDE for elliptic and initial value problems for parabolic problems. The elliptic part is closely connected to a linear elliptic operator, which we discretize by monotone schemes, and solve the nonlinear problem by iteration. We assume that the elliptic differential operator is in the divergence form, with measurable coefficients satisfying the strict ellipticity condition, and that the right-hand side is a positive Radon measure. The numerical schemes are not derived from finite difference operators approximating differential operators, but rather from a general principle which ensures the convergence of approximate solutions. The main feature of these schemes is that they possess stencils stretching far from basic grid-rectangles, thus leading to system matrices which are related to M-matrices.  相似文献   

2.
The major qualitative properties of linear parabolic and elliptic operators/PDEs are the different maximum principles (MPs). Another important property is the stabilization property (SP), which connects these two types of operators/PDEs. This means that under some assumptions the solution of the parabolic PDE tends to an equilibrium state when t, which is the solution of the corresponding elliptic PDE. To solve PDEs we need to use some numerical methods, and it is a natural requirement that these qualitative properties are preserved on the discrete level. In this work we investigate this question when a two-level discrete mesh operator is used as the discrete model of the parabolic operator (which is a one-step numerical procedure for solving the parabolic PDE) and a matrix as a discrete elliptic operator (which is a linear algebraic system of equations for solving the elliptic PDE). We clarify the relation between the discrete parabolic maximum principle (DPMP), the discrete elliptic maximum principle (DEMP) and the discrete stabilization property (DSP). The main result is that the DPMP implies the DSP and the DEMP.  相似文献   

3.
We study certain boundary value problems for the one-dimensional wave equation posed in a time-dependent domain. The approach we propose is based on a general transform method for solving boundary value problems for integrable nonlinear PDE in two variables, that has been applied extensively to the study of linear parabolic and elliptic equations. Here we analyse the wave equation as a simple illustrative example to discuss the particular features of this method in the context of linear hyperbolic PDEs, which have not been studied before in this framework.  相似文献   

4.
Nonlinear partial differential equation with random Neumann boundary conditions are considered. A stochastic Taylor expansion method is derived to simulate these stochastic systems numerically. As examples, a nonlinear parabolic equation (the real Ginzburg-Landau equation) and a nonlinear hyperbolic equation (the sine-Gordon equation) with random Neumann boundary conditions are solved numerically using a stochastic Taylor expansion method. The impact of boundary noise on the system evolution is also discussed.  相似文献   

5.
The initial/boundary-value problem for isothermal, lattice, semiconductor device modeling is described and analyzed. This nonlinear elliptic/parabolic system of reaction/diffusion/convection type is determined by a Maxwell equation, relating space/charge and the electric field, and by two continuity equations for the free electron and hole carrier concentrations. The Einstein relations for Brownian motion are not assumed in this analysis, so that the electrostatic potential, u, and the carrier concentrations, n and p, are the fundamental dependent variables of the system. The boundary conditions are Dirichlet conditions for dependent variable values on the contact portions of the device, and homogeneous Neumann conditions, expressing insulation, on the complement. Complicating the analysis are the transition singularity points between the mixed boundary conditions, and the field dependence of the mobility and diffusion coefficients. By means of a physically motivated analysis of the convective current component, we are able to uncouple the system by a cyclic horizontal line analysis, without an unreasonable time step restriction. The corresponding linear equations are solved by a contractive inner iteration. The outer iteration is shown to converge to a unique solution of the system, under singularity classification at the transition points. The definition of this outer iteration follows the steady-state Gummel iteration at discrete time steps. An existence theory is a by-product of the analysis, and is separated from uniqueness theory.  相似文献   

6.
Summary. In this paper, we describe a new technique for a posteriori error estimates suitable to parabolic and hyperbolic equations solved by the method of lines. One of our goals is to apply known estimates derived for elliptic problems to evolution equations. We apply the new technique to three distinct problems: a general nonlinear parabolic problem with a strongly monotonic elliptic operator, a linear nonstationary convection-diffusion problem, and a linear second order hyperbolic problem. The error is measured with the aid of the -norm in the space-time cylinder combined with a special time-weighted energy norm. Theory as well as computational results are presented. Received September 2, 1999 / Revised version received March 6, 2000 / Published online March 20, 2001  相似文献   

7.
We consider linear parabolic equations of second order in a Sobolev space setting. We obtain existence and uniqueness results for such equations on a closed two-dimensional manifold, with minimal assumptions about the regularity of the coefficients of the elliptic operator. In particular, we derive a priori estimates relating the Sobolev regularity of the coefficients of the elliptic operator to that of the solution. The results obtained are used in conjunction with an iteration argument to yield existence results for quasilinear parabolic equations.  相似文献   

8.
We consider the flow of nonlinear Maxwell fluids in the unsteady quasistatic case, where the effect of inertia is neglected. We study the well-posedness of the resulting PDE initial-boundary value problem locally in time. This well-posedness depends on the unique solvability of an elliptic boundary value problem. We first present results for the 3D case with sufficiently small initial data and for a simple shear flow problem with arbitrary initial data; after that we extend our results to some 3D flow problems with large initial data.We solve our problem using an iteration between linear subproblems. The limit of the iteration provides the solution of our original problem.  相似文献   

9.
We prove generalized Aleksandrov–Bakelman–Pucci maximum principles for elliptic and parabolic integro-PDEs of Hamilton–Jacobi–Bellman–Isaacs types, whose PDE parts are either uniformly elliptic or uniformly parabolic. The proofs of these results are based on the classical Aleksandrov–Bakelman–Pucci maximum principles for the elliptic and parabolic PDEs and an iteration procedure using solutions of Pucci extremal equations. We also provide proofs of nonlocal versions of the classical Aleksandrov–Bakelman–Pucci maximum principles for elliptic and parabolic integro-PDEs.  相似文献   

10.
We consider the fast and efficient numerical solution of linear-quadratic optimal control problems with additional constraints on the control. Discretization of the first-order conditions leads to an indefinite linear system of saddle point type with additional complementarity conditions due to the control constraints. The complementarity conditions are treated by a primal-dual active set strategy that serves as outer iteration. At each iteration step, a KKT system has to be solved. Here, we develop a multigrid method for its fast solution. To this end, we use a smoother which is based on an inexact constraint preconditioner.We present numerical results which show that the proposed multigrid method possesses convergence rates of the same order as for the underlying (elliptic) PDE problem. Furthermore, when combined with a nested iteration, the solver is of optimal complexity and achieves the solution of the optimization problem at only a small multiple of the cost for the PDE solution.  相似文献   

11.
This paper is concerned with an optimal boundary control of the cooling down process of glass, an important step in glass manufacturing. Since the computation of the complete radiative heat transfer equations is too complex for optimization purposes, we use simplified approximations of spherical harmonics including a practically relevant frequency bands model. The optimal control problem is considered as a constrained optimization problem. A first-order optimality system is derived and decoupled with the help of a gradient method based on the solution to the adjoint equations. The arising partial differential–algebraic equations of mixed parabolic–elliptic type are numerically solved by a self-adaptive method of lines approach of Rothe type. Adaptive finite elements in space and one-step methods of Rosenbrock-type with variable step sizes in time are applied. We present numerical results for a two-dimensional glass cooling problem.  相似文献   

12.
An efficient and reliable a posteriori error estimate is derived for linear parabolic equations which does not depend on any regularity assumption on the underlying elliptic operator. An adaptive algorithm with variable time-step sizes and space meshes is proposed and studied which, at each time step, delays the mesh coarsening until the final iteration of the adaptive procedure, allowing only mesh and time-step size refinements before. It is proved that at each time step the adaptive algorithm is able to reduce the error indicators (and thus the error) below any given tolerance within a finite number of iteration steps. The key ingredient in the analysis is a new coarsening strategy. Numerical results are presented to show the competitive behavior of the proposed adaptive algorithm.

  相似文献   


13.
This work is a survey of results for ill-posed Cauchy problems for PDEs of the author with co-authors starting from 1991. A universal method of the regularization of these problems is presented here. Even though the idea of this method was previously discussed for specific problems, a universal approach of this paper was not discussed, at least in detail. This approach consists in constructing of such Tikhonov functionals which are generated by unbounded linear operators of those PDEs. The approach is quite general one, since it is applicable to all PDE operators for which Carleman estimates are valid. Three main types of operators of the second order are among them: elliptic, parabolic and hyperbolic ones. The key idea is that convergence rates of minimizers are established using Carleman estimates. Generalizations to nonlinear inverse problems, such as problems of reconstructions of obstacles and coefficient inverse problems are also feasible.  相似文献   

14.
A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and semilinear problems on a very low dimensional space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient numerical methods can also serve as the linear solver for solving boundary value problems. The optimality of the computational work is also proved. Compared with the existing multigrid methods which need the bounded second order derivatives of the nonlinear term, the proposed method only needs the Lipschitz continuation in some sense of the nonlinear term.  相似文献   

15.
We consider a quasilinear parabolic boundary value problem, the elliptic part of which degenerates near the boundary. In order to solve this problem, we approximate it by a system of linear degenerate elliptic boundary value problems by means of semidiscretization with respect to time. We use the theory of degenerate elliptic operators and weighted Sobolev spaces to find a priori estimates for the solutions of the approximating problems. These solutions converge to a local solution, if the step size of the time-discretization goes to zero. It is worth pointing out that we do not require any growth conditions on the nonlinear coefficients and right-hand side, since we lire able to prove L∞ - estimates.  相似文献   

16.
Summary The Schwarz Alternating Method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each subdomain. In this paper, proofs of convergence of some Schwarz Alternating Methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method of subsolutions and supersolutions) are given. In particular, an additive Schwarz method for scalar as well some coupled nonlinear PDEs are shown to converge to some solution on finitely many subdomains, even when multiple solutions are possible. In the coupled system case, each subdomain PDE is linear, decoupled and can be solved concurrently with other subdomain PDEs. These results are applicable to several models in population biology. This work was in part supported by a grant from the RGC of HKSAR, China (HKUST6171/99P)  相似文献   

17.
We study subsolutions for semilinear elliptic boundary value problems in L1. We consider as well nonlinear as linear boundary conditions. The nonlinear functions may be multivated. We characterize in terms of p.d.e. the subsolutions defined by a nonlinear functional analysis argument. Applications are given to obtain existence results for semilinear elliptic boundary value problems and comparison and estimates for nonlinear parabolic boundary value problems.  相似文献   

18.
The numerical solution of linear elliptic partial differential equations most often involves a finite element or finite difference discretization. To preserve sparsity, the arising system is normally solved using an iterative solution method, commonly a preconditioned conjugate gradient method. Preconditioning is a crucial part of such a solution process. In order to enable the solution of very large-scale systems, it is desirable that the total computational cost will be of optimal order, i.e. proportional to the degrees of freedom of the approximation used, which also induces mesh independent convergence of the iteration. This paper surveys the equivalent operator approach, which has proven to provide an efficient general framework to construct such preconditioners. Hereby one first approximates the given differential operator by some simpler differential operator, and then chooses as preconditioner the discretization of this operator for the same mesh. In this survey we give a uniform presentation of this approach, including theoretical foundation and several practically important applications for both symmetric and nonsymmetric equations and systems, and some nonlinear examples in the context of Newton linearization. Dedicated to the memory of Gene Golub for his friendly manner and for his broad interest and significant impact on numerical analysis.  相似文献   

19.
An iterative procedure for determining temperature fields from Cauchy data given on a part of the boundary is presented. At each iteration step, a series of mixed well‐posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L2‐space is included, as well as a stopping criteria for the case of noisy data. Moreover, a solvability result in a weighted Sobolev space for a parabolic initial boundary value problem of second order with mixed boundary conditions is presented. Regularity of the solution is proved. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
This paper introduces a kind of multigrid finite element method for the coupled semilinear elliptic equations. Instead of the common way of directly solving the coupled semilinear elliptic problems on some fine spaces, the presented method transforms the solution of the coupled semilinear elliptic problem into a series of solutions of the corresponding decoupled linear boundary value problems on the sequence of multilevel finite element spaces and some coupled semilinear elliptic problems on a very low dimensional space. The decoupled linearized boundary value problems can be solved by some multigrid iterations efficiently. The optimal error estimate and optimal computational work are proved theoretically and demonstrated numerically. Moreover, the requirement of bounded second‐order derivatives of the nonlinear term in the existing multigrid method is reduced to a Lipschitz continuous condition in the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号