首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
阐述了高效毛细管电泳电化学检测器(包括电导、电势和安培检测)的研究现状,重点是检测器的研制及接口的制作技术。对各种电化学检测器的应用情况也进行了总结。展望了高效毛细管电泳电化学检测的发展前景。  相似文献   

2.
毛细管电泳电化学检测   总被引:8,自引:0,他引:8  
综述了毛细管电泳的电化学检测,包括电位法、电导法和安培法检测的研究进展,重点讨论了电化学检测与毛细管电泳的耦联,并对电化学检测的原理及其应用进行了较详细的叙述,引用文献72篇。  相似文献   

3.
毛细管电泳作为近年来发展起来的分离分析技术,以其分辨率高、分离时间短及样品试剂用量小等特点而被广泛用于环境、生物以及临床分析[1].基于三联吡啶钌的电化学发光检测技术结合了电化学检测的微型、原位和化学发光的高灵敏,可用于胺类、醇类、DNA以及免疫分析[2].毛细管电泳和电化学发光检测技术的结合可以成为一种低费用、低成本及简便快速的分离分析技术.  相似文献   

4.
毛细管电泳电化学法监测甘露糖生产工艺   总被引:2,自引:0,他引:2  
葡萄糖;葡萄糖酸钙;毛细管电泳电化学法监测甘露糖生产工艺;电化学检测  相似文献   

5.
电化学检测以其固有的灵敏度高、选择性可调、便于微型化、低功耗、低成本等特点,已成为芯片毛细管电泳系统中颇具潜力的检测方法。本文综述了近年来芯片毛细管电泳电化学检测技术的研究进展,包括芯片设计、加工、检测系统、检测方法等,并展望其发展方向。  相似文献   

6.
阐述了微芯片毛细管电泳电化学检测(包括安培法、电导法、电化学发光法和联用电化学法)的研究进展;对各种电化学检测的原理和应用进行了较详细的叙述;着重讨论了不同材料检测电极在安培检测中的应用;接触式电导和非接触式电导的应用情况;展望了微芯片毛细管电泳电化学检测的前景。引用文献87篇。  相似文献   

7.
对近年来毛细管电泳电化学检测在生物分子(氨基酸、蛋白质、脱氧核糖核酸和糖等)分析中的应用进展作出综述,展望了电化学检测在毛细管电泳中的应用前景(引用文献55篇)。  相似文献   

8.
推导了高效毛细管电泳碳柱电极安培电化学检测的检测电流表达式,并以自制毛细管电泳/电化学检测系统对其进行了实验验证。对给定直径的工作电极,检测电流正比于碳柱工作电极插入检测毛细管长度的2/3次方,也正比于液体电渗平均体积流速的1/3次方。实验结果与公式吻合很好,说明了检测电流表达式的正确性。  相似文献   

9.
以金微盘电极和离子液体修饰单壁碳纳米管糊微盘电极分别作为毛细管电泳电化学检测器,试验了两种电极对过氧化氢的响应情况,将金微盘电极与毛细管电泳联用,对过氧化氢进行了定性和定量检测.探讨了分离电压、缓冲溶液pH值和工作电位等条件对H2O2检测的影响.实验结果表明,峰电流与H2O2浓度在1.0×10-6~1.0×10-5mo...  相似文献   

10.
高效毛细管电泳电化学检测器的研制   总被引:7,自引:0,他引:7  
李关宾  杜斌 《分析化学》1995,23(4):480-484
本文提出了一种用于高效毛细管电泳的新型安培电化学检测器设计,使用Nafion溶液制作的HPCE/ED接口,可有效地隔开两化学系统的干扰,且不引入附加体积,经对有机酚类化合物的胶束电动毛细管色谱分离与电化学检测知,该系统性能优良,对对苯二酚的检出限为30amol。  相似文献   

11.
免疫亲和毛细管电泳的研究进展   总被引:2,自引:0,他引:2  
陈泓序  张新祥 《色谱》2009,27(5):631-641
免疫亲和毛细管电泳方法结合了免疫分析的高特异性和毛细管电泳分离的高效、快速、样品用量少等优点,是复杂样品中特定组分分析的重要方法之一。激光诱导荧光检测器的使用以及毛细管电泳分离前免疫预富集过程的引入,可以进一步提高分析测定的灵敏度,使其能够用于痕量物质的高灵敏测定。本文结合作者所在课题组的工作,对免疫亲和毛细管电泳的两种主要模式,即均相的毛细管电泳免疫分析(CEIA)和非均相的免疫亲和毛细管电泳(IACE)的研究进展进行了综述。  相似文献   

12.
杨冰仪  莫金垣  赖容 《化学学报》2003,61(9):1461-1465
报道了一种双工作电极-双通道毛细管电泳电化学检测系统,实现电导和安培 同时检测或者安培与安培检测联用,使两种方法相互补充,发挥各自的优势。其中 ,工作电极与检测池的制作工艺简单,操作简便,通过不锈钢针管和毛细管作为套 管,无需三维微调装置即可简单实现双工作电极的准确放置及分离毛细管与工作电 极的准确对接,并根据分析体系的需要采用不同类型的工作电极和检测器;同时采 用复式滤波电路解决了不同检测器之间的电场叠加对输出信号的干扰问题。采用该 装置可以同时检测复杂体系中的电活性和惰性物质,或同时测定只能氧化或只能还 原的物质,还可以对具有氧化还原性质的物质进行纯度的确证。将该装置应用于实 际样品的测定,节约了分析时间,提高了分析速度,扩大了检测范围,结果令人满 意。  相似文献   

13.
A new SWCNT modified gold detector for microchip capillary electrophoresis–electrochemistry is described. SWCNT modified gold electrode displays greatly improved sensitivity and separation resolution compared to bare gold electrode, reflecting the electrocatalytic activity of SWCNT. The SWCNT/Au electrode exhibits low background noise levels. Parameters such as separation voltage and detection potential of the microchip electrophoresis–electrochemistry with SWCNT modified gold electrode were optimized.  相似文献   

14.
Herein, we report an approach for protein detection enhanced by ionic liquid (IL) selectors in capillary electrophoresis (CE), with avidin as a model protein. Hydrophilic ILs were added into the running buffer of CE and acted as selectors for sample injection, enriching the positive target and excluding the negative from the capillary. When using 3 % (v/v) IL selector, the detection sensitivity of avidin was improved by over one order of magnitude, while the interference from protein adsorption was effectively avoided, even in an uncoated capillary. The electrochemiluminescence method was initially used for IL-based CE with low noise that was independent of the IL concentration, making ILs almost transparent as additives in the electrophoresis buffer.  相似文献   

15.
IntroductionSineHjerenintroduceditinl967,capillaryelectrophoresis(CE)hasbecomeapowerfulanalyticaltool.Becauseithasidealdetectionlimits,smallsampleintIoductionandhighseparationefficiency,CEhasbeenappliedinmanyareasincludingchemistry,biology,medicineandenvironmentalscience,etc.InCEtechnique,owingtoextremelysmallsampleintroductionandverythincapillaries,thedetectorsmustpossessthefeaturesofhigh-sensitivity,high-reso1ution,rapidresponseandon-line.Forthisreason,developingdetectivemethodsisaveryim…  相似文献   

16.
Depression is a common mental disorder that may lead to major mental health problems, and antidepressant drugs have been used as a treatment of choice to mitigate symptoms of major depressive disorders by ameliorating the chemical imbalances of neurotransmitters in brain. Since abusing antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressant drugs can cause severe adverse effects, continuous toxicological monitoring of the parent compounds as well as their metabolites using numerous analytical methods appears pertinent. Among them, capillary electrophoresis has been popularly utilized since the method has a lot of advantages viz. using small amounts of sample and solvents, ease of operation, and rapid analysis. This review paper brings a survey of more than 30 papers on capillary electrophoresis of antidepressant drugs published approximately from 1999 until 2018. It focuses on the reported capillary electrophoresis techniques and their applications and challenges for determining antidepressant drugs and their metabolites. It is organized according to the commonly used capillary zone electrophoresis method, followed by non‐aqueous capillary electrophoresis and micellar electrokinetic chromatography, with details on breakthrough findings. Where available, information is given about the background electrolyte used, detector utilized, and sensitivity obtained.  相似文献   

17.
Nearly all processes in living organisms are controlled and regulated by the synergy of many biomolecule interactions involving proteins, peptides, nucleic acids, nucleotides, saccharides, and small molecular weight ligands. There is growing interest in understanding them, not only for the purposes of interactomics as an essential part of system biology, but also in their further elucidation in disease pathology, diagnostics, and treatment. The necessity of detailed investigation of these interactions leads to the requirement of laboratory methods characterized by high efficiency and sensitivity. As a result, many instrumental approaches differing in their fundamental principles have been developed, including those based on capillary electrophoresis. Although capillary electrophoresis offers numerous advantages for such studies, it still has one serious limitation, its poor concentration sensitivity with the most commonly used detection method–ultraviolet‐visible spectrometry. However, coupling capillary electrophoresis with a more sensitive detector fulfils the above‐mentioned requirement. In this review, capillary electrophoresis combined with fluorescence, mass spectrometry, and several nontraditional detection techniques in affinity interaction studies are summarized and discussed, together with the possibility of conducting these measurements in microchip format.  相似文献   

18.
A carbon nanotube/poly(ethyl 2-cyanoacrylate) (CNT/PECA) composite electrode was developed for enhanced amperometric detection. The composite electrode was fabricated on the basis of water-vapor-initiated polymerization of a mixture of CNTs and ethyl 2-cyanoacrylate in the bore of a piece of fused silica capillary. The morphology and structure of the composite were investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. The results indicate that the CNTs were well dispersed and embedded throughout the PECA matrix to form an interconnected CNT network. The analytical performance of this unique CNT-based detector has been demonstrated by separating and detecting six flavones in combination with capillary electrophoresis. The advantages of the CNT/PECA composite detector include lower operating potential, higher sensitivity, low expense of fabrication, satisfactory resistance to surface fouling, and enhanced stability; these properties indicate great promise for a wide range of applications.  相似文献   

19.
《Analytical letters》2012,45(18):3457-3471
Abstract

Induced peak phenomenon in capillary zone electrophoresis with electrochemiluminescence detection for chiral separation of racemic phenylalanine mixture employing sulfated‐β‐cyclodextrin as chiral selector and acetonitrile as organic additive in the separation buffer was observed. Various experimental parameters influencing the intensity and the position of the induced peak were systematically investigated to find out the truth of the induced peak. Based on the experimental evidence, a reasonable mechanism involved in the formation of the induced peak was proposed. We found out the induced peak resulted from physical interactions between the components in the separation buffer and the injected sample during the electromigration process rather than chemical complexation interactions. Furthermore, suggestions to avoid the appearance of induced peak in capillary zone electrophoresis with electrochemiluminescence detection for chiral separations were presented.  相似文献   

20.
Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号