首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dioxomolybdenum(VI) complexes of general formula [MoO2X2L2] (X = Cl, OSiPh3; L2 = 2-(1-butyl-3-pyrazolyl)pyridine, ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate) were prepared and characterised by 1H NMR, IR and Raman spectroscopy. The assignment of the vibrational spectra was supported by ab initio calculations. A single crystal X-ray diffraction study of the complex [MoO2Cl2{ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate}] showed that the compound is monomeric and crystallises in the tetragonal system with space group P41. The four complexes are active and selective catalysts for the liquid-phase epoxidation of olefins by tert-butylhydroperoxide. Selectivities to the corresponding epoxides were mostly 100% (for conversions of at least 34%) for the substrates cyclooctene, cyclododecene, 1-octene, trans-2-octene and (R)-(+)-limonene. For styrene epoxidation, the corresponding diol was also formed in significant quantities. The turnover frequencies for cyclooctene epoxidation at 55 °C were around 340 mol molMo−1 h−1 for the chloro complexes and 160 mol molMo−1 h−1 for the triphenylsiloxy complexes. The addition of co-solvents (1,2-dichloroethane or n-hexane) had a detrimental effect on catalytic activities. Kinetic studies for the two complexes bearing the ligand ethyl[3-(2-pyridyl)-1-pyrazolyl]acetate revealed an apparent first order dependence of the initial rate of cyclooctene conversion with respect to cyclooctene or oxidant concentration.  相似文献   

2.
Dioxomolybdenum(VI) complexes with the general formula [MoO2X2(N,N)] (X = Cl, OSiPh3) containing a chiral bidentate oxazoline ligand (N,N = 2,2′-bis[(4S)-4-benzyl-2-oxazoline]) have been prepared and characterised by 1H NMR, IR spectroscopy and thermogravimetric analysis. The bis(chloro) complex was heterogenised in the ordered mesoporous silica MCM-41 by direct grafting in dichloromethane. Elemental analysis and 29Si MAS NMR spectroscopy of the derivatised material indicated the presence of monopodally anchored species of the type MoO2[(–O)3SiO]Cl(N,N). The complex [MoO2Cl2(N,N)] and the derivatised material exhibited initial activities of 147 and , respectively, in the catalytic epoxidation of cyclooctene using tert-butylhydroperoxide (tBuOOH) as the oxidant, both yielding 1,2-epoxycyclooctane quantitatively within 24 h at 55 °C. The MCM-41 grafted catalyst could be recycled with no loss in performance with respect to the epoxide yields obtained for reaction times above 2 h. With trans-β-methylstyrene as the substrate, the bis(chloro) complex and the derivatised material gave epoxides as the only products with yields in the range of 56–64% after 24 h, but no catalytic asymmetric induction was observed. The triphenylsiloxy complex was more active than the bis(chloro) complex for the epoxidation of trans-β-methylstyrene, but the enantiomeric excess was negligible and the corresponding diols were also formed. For the reaction catalysed by the supported material, changing the oxidant from tBuOOH to cumene hydroperoxide greatly improved the catalytic activity but the enantiomeric excess continued very low and the corresponding diol was the main product.  相似文献   

3.
A series of dioxomolybdenum(VI) complexes with similar hydrazone ligands have been prepared, specifically [MoO2L1(MeOH)] (1), [MoO2L2(MeOH)] (2) and [MoO2L3(MeOH)] (3), where L1, L2 and L3 are the dianionic forms of 2-chloro-N′-(2-hydroxybenzylidene)benzohydrazide, 2-chloro-N′-(2-hydroxy-5-methylbenzylidene)benzohydrazide and N′-(3-bromo-5-chloro-2-hydroxybenzylidene)-2-chlorobenzohydrazide, respectively. The complexes were characterized by physicochemical and spectroscopic methods and also by single-crystal X-ray determination. The hydrazone ligands coordinate to the Mo atoms through their phenolate O, imine N and enolic O atoms. The Mo atoms are six-coordinated in octahedral geometries. The complexes show high catalytic activities and selectivities in the epoxidation of cyclohexene with tert-butylhydroperoxide as primary oxidant.  相似文献   

4.
A novel dioxomolybdenum(VI) complex of ferrocenyliminoalcoholate was easily prepared by the reaction of the ferrocenyl-containing iminoalcohol and MoO2Cl2 (THF)2 using THF as solvent. The sample was characterized by FT-IR, 1 H NMR, elemental analysis and UV-Vis. The complex exhibited an efficient, selective catalytic performance for styrene and cyclohexene epoxidation.  相似文献   

5.
6.
A pair of Mo(VI) complexes, [MoO2L1(MeOH)] (1) and [MoO2L2(MeOH)] (2), where L1 and L2 are the dianions of 2-amino-N’-(3-bromo-5-chloro-2-hydroxybenzylidene)benzohydrazide (H2L1) and 2-amino-N’-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (H2L2), respectively, have been prepared and characterized by physico-chemical methods and single-crystal X-ray diffraction. The Mo atom in each complex is coordinated by the phenolate oxygen, imino nitrogen and enolate oxygen of the hydrazone ligand, together with a methanol ligand and two oxo groups, giving a distorted octahedral geometry. The complexes proved to be effective catalysts for the oxidation of various olefins.  相似文献   

7.
The preparation of Mo(VI) hydrazone complexes, cis-[MoO2L1(CH3OH)] (I) and cis-[MoO2L2(CH3OH)] (II), derived from N'-(3-bromo-2-hydroxybenzylidene)-2-chlorobenzohydrazide (H2L1) and N'-(3-bromo-2-hydroxybenzylidene)-4-bromobenzohydrazide (H2L2), respectively, is reported. The complexes were characterized by elemental analyses, infrared and electronic spectroscopy, and single crystal structure analysis (CIF files ССDС nos. 1426875 (I), 1426871 (II)). The Mo atoms are coordinated by two cis terminal oxygen, ONO from the hydrazone ligand, and methanol oxygen. Even though the hydrazone ligands and the coordination sphere in both complexes are similar, the unit cell dimensions and the space groups are different. Complex I crystallized as orthorhombic space group Pca21 with unit cell dimensions a = 27.887(2), b = 8.0137(7), c = 15.544(1) Å, V = 3473.8(5) Å3, Z = 8, R 1 = 0.0450, wR 2 = 0.0539. Complex II crystallized as triclinic space group P1, with unit cell dimensions a = 8.2124(4), b = 8.5807(5), c = 12.9845(8) Å, α = 83.366(2)°, β = 79.201(2)°, γ = 80.482(2)°, V = 883.03(9) Å3, Z = 2, R 1 = 0.0278, wR 2 = 0.0569. The complexes were tested as catalyst for the oxidation of olefins, and showed effective activity.  相似文献   

8.
The Rieske dioxygenases are a group of non-heme iron enzymes, which catalyze the stereospecific cis-dihydroxylation of its substrates. Herein, we report the iron(II) coordination chemistry of the ligands 3,3-bis(1-methylimidazol-2-yl)propionate (L1) and its neutral propyl ester analogue propyl 3,3-bis(1-methylimidazol-2-yl)propionate (PrL1). The molecular structures of two iron(II) complexes with PrL1 were determined and two different coordination modes of the ligand were observed. In [Fe(II)(PrL1)(2)](BPh(4))(2) (3) the ligand is facially coordinated to the metal with an N,N,O donor set, whereas in [Fe(II)(PrL1)(2)(MeOH)(2)](OTf)(2) (4) a bidentate N,N binding mode is found. In 4, the solvent molecules are in a cis arrangement with respect to each other. Complex 4 is a close structural mimic of the crystallographically characterized non-heme iron(II) enzyme apocarotenoid-15-15'-oxygenase (APO). The mechanistic features of APO are thought to be similar to those of the Rieske oxygenases, the original inspiration for this work. The non-heme iron complexes [Fe(II)(PrL1)(2)](OTf)(2) (2) and [Fe(II)(PrL1)(2)](BPh(4))(2) (3) were tested in olefin oxidation reactions with H(2)O(2) as the terminal oxidant. Whereas 2 was an active catalyst and both epoxide and cis-dihydroxylation products were observed, 3 showed negligible activity under the same conditions, illustrating the importance of the anion in the reaction.  相似文献   

9.
A group of a diverse family of dinuclear copper(II) complexes derived from pyrazole‐containing tridentate N2O ligands, 1,3‐bis(3,5‐dimethylpyrazol‐1‐yl)propan‐2‐ol (Hdmpzpo), 1,3‐bis(3‐phenyl‐5‐methyl pyrazol‐1‐yl)propan‐2‐ol (Hpmpzpo) and 1,3‐bis(3‐cumyl‐5‐methylpyrazol‐1‐yl)propan‐2‐ol (Hcmpzpo), were synthesized and characterized by elemental analysis, IR spectroscopy and three of them also by single‐crystal X‐ray diffraction. Three complexes, [Cu2(pmpzpo)2](NO3)2·2CH3OH ( 3 ·2CH3OH), [Cu2(pmpzpo)2](ClO4)2 ( 4 ) and [Cu2(cmpzpo)2](ClO4)2·2DMF ( 7 ·2DMF), each exhibits a dimeric structure with a inversion center being located between the two copper atoms. The metal ion is coordinated in a distorted square planar environment by two pyrazole nitrogen atoms and two bridging alkoxo oxygen atoms. Both complexes 1 ·CH3OH·H2O and 3 ·2CH3OH were investigated in anaerobic conditions for the catalytic oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ), for modeling the functional properties of catechol oxidase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(CH3OH)] (1) and [MoO2L2(H2O)] (2), where L1 and L2 are dianionic form of N′-(2-hydroxy-3-methoxybenzylidene)-4methoxybenzohydrazide and N′-(2-hydroxy-3methoxybenzylidene)-2-hydroxybenzohydrazide, respectively, have been synthesized and structurally characterized by spectroscopic methods and single-crystal X-ray determination. The complexes are mononuclear molybdenum(VI) compounds. Mo in each complex is octahedral. The difference in the substituent groups in the benzohydrazides leads to coordination of different solvent molecules. Crystals of the complexes are stabilized by hydrogen bonds. The complexes are effective catalysts for sulfoxidation.  相似文献   

11.
Five kinds of dioxomolybdenum(VI) complexes with Schiff base ligands derived from tris(hydroxymethyl)amino methane are prepared and structurally characterized by X-ray crystallography, which reveals that these complexes adopt a distorted octahedral six-coordinate configuration formed by the tridentate Schiff base ligand, one coordinating water and two binding oxygen atoms. These complexes show good catalytic activities and selectivity in the epoxidation of cyclohexene with t-butylhydroperoxide, especially for complex 4, which could give a nearly 100% of epoxidation conversion and selectivity. Introduction of the electron-withdrawing group to the salicylidene ring of complex strongly increases the effectiveness of a catalyst, but decreases the redox stability of a complex.  相似文献   

12.
Two Mo(VI) aroylhydrazone complexes, cis-[MoO2(L1)(CH3OH)] (I) and cis-[MoO2(L2)(CH3OH)] (II), derived from 2-bromo-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (H2L1) and 2-bromo-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide (H2L2), respectively, are reported. The complexes were characterized by elemental analyses, infrared and electronic spectroscopy, and single crystal structure analysis (CIF files CCDC nos. 1443679 (I) and 1443678 (II)). The Mo atoms are coordinated by two cis terminal oxygen, ONO from the aroylhydrazone ligand, and methanol oxygen. Complex I crystallized as monoclinic space group P21/c with unit cell dimensions a = 8.075(2), b = 13.905(1), c = 16.448(1) Å, β = 91.282(2)°, V = 1846.5(4) Å3, Z = 4, R 1 = 0.0859, wR 2 = 0.2066. Complex II crystallized as triclinic space group P \(\overline 1 \), with unit cell dimensions a = 8.0824(6), b = 10.5919(8), c = 10.7697(8), α = 96.432(2)°, β = 97.438(2)°, γ = 103.119(2)°, V = 880.8(1) Å3, Z = 2, R 1 = 0.0271, wR 2 = 0.0571. The complexes were tested as catalyst for the oxidation of olefins and showed effective activity.  相似文献   

13.
Complexes of the general formula [MoO(2)X(2)L(2)] (X=Cl, Br, Me; L(2)=bipy, bpym) have been prepared and fully characterized, including X-ray crystallographic investigations of all six compounds. Additionally, the highly soluble complex [MoO(2)Cl(2)(4,4'-bis(hexyl)-2,2'-bipyridine)] has been synthesized. The reaction of the complexes with tert-butyl hydroperoxide (TBHP) is an equilibrium reaction, and leads to MoV(I) eta(1)-alkylperoxo complexes that selectively catalyze the epoxidation of olefins. Neither the Mo-X bonds nor the Mo-N bonds are cleaved during this reaction. These experimental results are supported by theoretical calculations, which show that the attack of TBHP at the Mo center through the X-O-N face is energetically favored and the TBHP hydrogen atom is transferred to a terminal oxygen of the Mo=O moiety. After the attack of the olefin on the Mo-bound peroxo oxygen atom, epoxide and tert-butyl alcohol are formed. The latter compound acts as a competitive inhibitor for the TBHP attack, and leads to a significant reduction in the catalytic activity with increasing reaction time.  相似文献   

14.
Several Schiff-base ligands readily form complexes with methyltrioxorhenium(VII) (MTO) by undergoing a hydrogen transfer from a ligand-bound OH group to a ligand N atom. The resulting complexes are stable at room temperature and can be handled and stored in air without problems. Due to the steric demands of the ligands they display distorted trigonal-bipyramidal structures in the solid state, as shown by X-ray crystallography, with the O(-) moiety binding to the Lewis acidic Re atom and the Re-bound methyl group being located either in cis or trans position to the Schiff base. In solution, however, the steric differences seem not to be maintained, as can be deduced from (17)O NMR spectroscopy. Furthermore, the Schiff-base ligands exchange with donor ligands. Nevertheless, the catalytic behaviour is influenced significantly by the Schiff bases coordinated to the MTO moiety, which lead either to high selectivities and good activities or to catalyst decomposition. A large excess of ligand, in contrast to the observations with aromatic N-donor ligands, is detrimental to the catalytic performance as it leads to catalyst decomposition.  相似文献   

15.
Electrochemical transformations of antimony(V) complexes containing a tridentate redoxactive ligand, N,N-bis-(2-hydroxy-di-3,5-tert-butylphenyl)amine: R 3Sb(Cat-NH-Cat) (R = (1) Ph; (2) Et), (3) Et2Sb(Cat-N-Cat)) are studied. Electrochemical oxidation of complexes 1, 2 occurs irreversibly leading to formation of unstable radical cations. The next stage is the chemical process resulting in formation of neutral paramagnetic compounds. The Et2Sb(V)(Cat-N-Cat) complex is characterized by two reversible anodic redox processes corresponding to a change of in the ligand redox level. Stable paramagnetic derivatives are formed as a result of electrochemical oxidation of compounds 1, 3; this allows considering these compounds as potential radical scavengers. Interaction of complex 1 with electrogenerated superoxide radical anion led to formation of paramagnetic reaction products.  相似文献   

16.
17.
Two new dioxomolybdenum(VI) complexes, [MoO2(L1)] n · 0.5 n CH3OH (I) and [MoO2(L2)(CH3OH)] (II), where L1 and L2 are the dianionic form of N′-[1-(4-diethylamino-2-hydroxyphenyl)methylidene]isonicotinohydrazide and N′-(2-hydroxy-4-methoxybenzylidene)-3-methylbenzohydrazide, respectively, were prepared and structurally characterized by physicochemical and spectroscopic methods and single-crystal X-ray determination. For complex I, a polymeric structure is obtained, which is linked by coordination of the pyridine N atoms to the Mo atoms of other [MoO2(L1)] units. Complex II is a mononuclear molybdenum compound. In both complexes, the Mo atoms are in octahedral coordination. The catalytic properties of the complexes indicate that they are efficient catalysts for sulfoxidation.  相似文献   

18.
The reaction between trisdiolatotungsten(VI) complex [W(eg)(3)] (1) (eg = 1,2-ethanediolato dianion) and phenolic ligand precursor methylamino-N,N-bis(2-methylene-4,6-dimethylphenol) (H(2)L(Me)) or methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol) (H(2)L(tBu)) affords monomeric oxotungsten complex [WO(eg)(L(Me))] (2) or [WO(eg)(L(tBu))] (3), respectively. These complexes react further with chlorinating reagents, which leads to the displacement of ethanediolato ligands from the complex units and formation of cis and trans isomers of the corresponding dichloro complexes [WOCl(2)(L(Me))] (4) and [WOCl(2)(L(tBu))] (5), respectively. Identical dichloro complexes were also prepared by the reaction between the above-mentioned phenolic ligand precursors and [WOCl(4)]. Molecular structures of 3, cis-4, trans-4, and cis-5 were verified by X-ray crystallography. Complexes 2-5 can be activated by Et(2)AlCl to catalyze ring-opening metathesis polymerization of norbornene.  相似文献   

19.
The synthesis and characterization of a number of cis-dioxomolybdenum(VI) coordination complexes involving tridentate (ONS) ligands is described. The Schiff base ligands were obtained by condensation of 5-substituted salicylaldehydes with o-aminobenzenethiol or 2-aminoethanethiol. The chemical properties of these molybdenum complexes are compared with those having tridentate ligands with the ONO donor atom set. Cyclic voltammetry was used to obtain cathodic reduction potentials (Epc) for the irreversible reduction of the Mo(VI) complexes. Although the reductions are irreversible, trends are observed in Epc both within each series and when different series are compared. Cathodic reduction potentials for the four series examined span the range from ?1.53 to ?1.05 V versus NHE. There are three ligand features whose effect systematically alters the Mo(VI) cathodic reduction potentials. These include (1) the X-substituent on the salicylaldehyde portion of each ligand; (2) the degree of ligand delocalization; and (3) the substitution of a sulphur donor atom for an oxygen donor atom. Each of these effects is considered separately with regard to the Mo(VI) cathodic reduction potentials and then their cumulative effect is described.  相似文献   

20.
Dioxomolybdenum(VI) complex [MoO2Cl2(dmso)2] reacts with a series of tetradentate O3N-type aminoalcohol–bisphenol ligands to form oxomolybdenum(VI) complexes of type [MoOCl(Ln)]. The reaction of H3L1 produces [MoOCl(L1)] as two separable isomers, whereas the reaction of H3L2 or H3L3 yields a single product. The X-ray analyses of cis- and trans-[MoOCl(L1)] reveal that the complexes are formed of monomeric molecules. The ligands have tetradentate coordination through three oxygen donors and one nitrogen donor, which is located trans to the terminal oxo group. The sixth coordination site is occupied by a chloro ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号