首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new series of group 5 metal amides have been prepared from the reaction between V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) and chiral ligands, (R)-2,2'-bis(mesitoylamino)-1,1'-binaphthyl (1H(2)), (R)-5,5',6,6',7,7',8,8'-octahydro-2,2'-bis(mesitoylamino)-1,1'-binaphthyl (2H(2)), (R)-6,6'-dimethyl-2,2'-bis(mesitoylamino)-1,1'-biphenyl (3H(2)), (R)-2,2'-bis(mesitylenesulfonylamino)-6,6'-dimethyl-1,1'-biphenyl (4H(2)), (R)-2,2'-bis(diphenylthiophosphoramino)-1,1'-binaphthyl (5H(2)), (R)-2,2'-bis[(3-tert-butyl-2-hydroxybenzylidene)amino]-6,6'-dimethyl-1,1'-biphenyl (6H(2)), (R)-2,2'-bis[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]-6,6'-dimethyl-1,1'-biphenyl (7H(2)), (R)-2,2'-bis[(3-tert-butyl-2-hydroxybenzylidene)amino]-1,1'-binaphthyl (8H(2)), (S)-2-(mesitoylamino)-2'-(dimethylamino)-1,1'-binaphthyl (9H), and (R)-2-(mesitoylamino)-2'-(dimethylamino)-6,6'-dimethyl-1,1'-biphenyl (10H), which are derived from (R) or (S)-2,2'-diamino-1,1'-binaphthyl, and (R)-2,2'-diamino-6,6'-dimethyl-1,1'-biphenyl, respectively. Treatment of V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) with 1 equiv of C(2)-symmetric amidate ligands 1H(2), 2H(2), 3H(2), 4H(2), and 5H(2), or Schiff base ligands 6H(2), 7H(2) and 8H(2) at room temperature gives, after recrystallization from a benzene, toluene or n-hexane solution, the vanadium amides (1)V(NMe(2))(2) (11), (2)V(NMe(2))(2) (14), (3)V(NMe(2))(2) (17), (5)V(NMe(2))(2) (22), (6)V(NMe(2))(2) (23) and (7)V(NMe(2))(2) (24), and niobium amides (1)Nb(NMe(2))(3) (12), (2)Nb(NMe(2))(3) (15), (3)Nb(NMe(2))(3) (18), (4)Nb(NMe(2))(3) (20) and [2-(3-Me(3)C-2-O-C(6)H(3)CHN)-2'-(N)-C(20)H(12)][2-(Me(2)N)(2)CH-6-CMe(3)-C(6)H(3)O]NbNMe(2)·C(7)H(8) (25·C(7)H(8)), and tantalum amides (1)Ta(NMe(2))(3) (13), (2)Ta(NMe(2))(3) (16), (3)Ta(NMe(2))(3) (19) and (4)Ta(NMe(2))(3) (21) respectively, in good yields. Reaction of V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) with 2 equiv of C(1)-symmetric amidate ligands 9H or 10H at room temperature gives, after recrystallization from a toluene or n-hexane solution, the chiral bis-ligated vanadium amides (9)(2)V(NMe(2))(2)·3C(7)H(8) (27·3C(7)H(8)) and (10)V(NMe(2))(2) (28), and chiral bis-ligated metallaaziridine complexes (10)(2)M(NMe(2))(η(2)-CH(2)NMe) (M = Nb (29), Ta (30)) respectively, in good yields. The niobium and tantalum amidate complexes are stable in a toluene solution at or below 160 °C, while the vanadium amidate complexes degrade via diemthylamino group elimination at this temperature. For example, heating the complex (2)V(NMe(2))(2) (14) in toluene at 160 °C for four days leads to the isolation of the complex [(2)V](2)(μ-NMe(2))(2) (26) in 58% yield. These new complexes have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 12, 13, and 15-30 have further been confirmed by X-ray diffraction analyses. The vanadium amides are active chiral catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in moderate to good yields with good ee values (up to 80%), and the tantalum amides are outstanding chiral catalysts for the hydroaminoalkylation, giving chiral secondary amines in good yields with excellent ee values (up to 93%).  相似文献   

2.
Treatment of fac-[Rh(aet) 3] (aet = 2-aminoethanethiolate) with 2,2'-bis(bromomethyl)-1,1'-biphenyl gave a mononuclear rhodium(III) complex with a nine-membered S, S-chelate ring, fac-[Rh(aet)(L)] (2+) ([ 1] (2+), L = 2,2'-bis(2-aminoethylthiomethyl)-1,1'-biphenyl). Complex [ 1] (2+) afforded a pair of atrop diastereomers, Delta SS( S ax)/Lambda RR( R ax)-[ 1] (2+) ([ 1a] (2+)) and Delta SS( R ax)/Lambda RR( S ax)-[ 1] (2+) ([ 1b] (2+)), which involves the axial chirality ( R ax/ S ax) about a biphenyl moiety of L, besides the central chirality (Delta/Lambda) about a Rh (III) ion bound by two asymmetric ( R/ S) thioether donors. The atrop diastereomers ([ 1a] (2+) and [ 1b] (2+)) were successfully separated, isolated, and optically resolved, and the circular dichroism (CD) contribution from the axial chirality was evaluated by CD spectral analyses.  相似文献   

3.
Oxidation of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD, 1 a) and N,N'-diphenyl-N,N'-bis(2,4-dimethylphenyl)-(1,1'-biphenyl)-4,4'-diamine (1 b) with SbCl(5) affords the corresponding radical cations quantitatively. The crystal and molecular structure of 1 b and [1 b]SbCl(6), the first tetraphenyl benzidene derivatives to be characterised crystallographically in both the neutral and radical cation states, reveal molecular parameters in agreement with the predictions made on the basis of DFT studies. Analysis of the NIR transition in the radical cations [1](+) (.) allows an estimate of the electronic coupling parameter V (1 a(+) (.) 3200 cm(-1); 1 b(+) (.) 3300 cm(-1)), the reorganisation energy lambda(1 a(+) (.) 7500 cm(-1); 1 b(+) (.) 7800 cm(-1)), and the linear coupling constant l (1 a(+) (.) 3100 cm(-1); 1 b(+) (.) 2700 cm(-1)) of the symmetric mode.  相似文献   

4.
The lysis of red blood cells photosensitized by diflunisal (DFN) was investigated. Photohemolysis is inhibited by butylated hydroxyanisole and reduced glutathione, but is unaffected by mannitol and enhanced by sodium azide; the presence of oxygen markedly reduces the lysis which is accelerated in anaerobic conditions. These results contrast with those expected for a photodynamic mechanism. High lytic activity is observed for pre-irradiated solutions, mainly under anaerobic conditions. Direct irradiation of DFN in buffer solution at pH 7.4 leads to the formation, under anaerobic conditions, of compound 2'-(2',4'-difluoro-3'-carboxy-[1',1'-biphenyl]-4'-oxy)-4'- fluoro-4-hydroxy-[1,1'-biphenyl]-3-carboxylic acid (PhP), whereas under aerobic conditions formation of PhP is accompanied by unidentified photo-oxidation products; only compound PhP displays strong lytic activity. The overall results for DFN-photosensitized hemolysis suggest a mechanism involving a concerted action of free radicals, superoxide anion, singlet oxygen and sensitizer photoproducts.  相似文献   

5.
Chiral water-soluble secondary phosphines (2-6) were obtained by nucleophilic phosphination of FC(6)H(4)-4-SO(3)K (1a), FC(6)H(3)-2,4-(SO(3)K)(2) (1b), and FC(6)H(4)-2-SO(3)K (1c) with RPH(2) (R = Ph, 2,4,6-Me(3)C(6)H(2), 2,4,6-iPr(3)C(6)H(2)) in the superbasic medium DMSO/KOH by employing steric control of substitution at phosphorus by bulky substituents R and sulfonic groups in the ortho position of the aromatic ring systems in 1b or 1c. The secondary phosphines may be deprotonated in DMSO/KOH to give phosphido anions which on reaction with alkyl halides (PhCH(2)Cl, Br(CH(2))(3)Br, and C(12)H(25)Br) yield mono- or bidentate tertiary phosphines (7-10). Ligands of this type are alternatively accessible by nucleophilic arylation of secondary phosphines, e.g. Ph(Me)PH or Ph(H)P(CH(2))(3)P(H)Ph with 1a or 1b, respectively. The crystal structure of the starting material 1b.H(2)O (space group P2(1)/m) has been determined. In the solid state of 1b.H(2)O the individual molecules are interconnected by ionic interactions between the potassium cations and the SO(3)(-) anions. The C-F bond (C(1)-F 1.347(4) ?) is shorter than that in C(6)H(5)F (1.356(4) ?). The unit cell of 7a.0.5H(2)O (space group P&onemacr;), the first structurally characterized chiral phosphine with a sulfonated phenyl substituent, contains the two enantiomers. Due to the asymmetrical substitution at phosphorus the PC(3) skeletons are significantly distorted (P(1)-C(1,11,31) 1.864(10), 1.825(8), 1.841(7) ?). The electronic structure of sulfonated fluorobenzenes FC(6)H(5)(-)(n)()(SO(3)M)(n)() (M = K, NH(4), n = 1-3) is discussed on the basis of quantum chemical calculations. In particular, the reactivity difference toward nucleophilic phosphination within the series is rationalized in terms of steric factors and of the -I effect of the sulfonic groups.  相似文献   

6.
A new series of luminescent cyclometalated iridium(III) bipyridine estradiol conjugates [Ir(N-C)2(N-N)](PF6) (N-N = 5-(4-(17alpha-ethynylestradiolyl)phenyl)-2,2'-bipyridine, bpy-est, HN-C = 2-phenylpyridine, Hppy (1 a), 1-phenylpyrazole, Hppz (2 a), 7,8-benzoquinoline, Hbzq (3 a), 2-phenylquinoline, Hpq (4 a), 2-((1,1'-biphenyl)-4-yl)benzothiazole, Hbsb (5 a); N-N = 4-(N-(6-(4-(17alpha-ethynylestradiolyl)benzoylamino)hexyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine, bpy-C6-est, HN-C = Hppy (1 b), Hppz (2 b), Hbzq (3 b), Hpq (4 b), Hbsb (5 b)) was synthesized, characterized, and their photophysical and electrochemical properties studied. Upon photoexcitation, all the complexes displayed intense and long-lived emission in fluid solutions at 298 K and in low-temperature glass. The emission of complexes 1 a-3 a and 1 b-3 b was assigned to a triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir)-->pi*(bpy-est and N-C-)) state mixed with some triplet intraligand ((3)IL) (pi-->pi*) (N-C- and N-N) character. However, the emissive states of the pq- and bsb- complexes 4 a, 4 b, 5 a, and 5 b showed substantial (3)IL (pi-->pi*) (pq-/bsb-) character. The lipophilicity of all the complexes was determined by reversed-phase HPLC. Upon binding to estrogen receptor alpha, all of these iridium(III) estradiol conjugates exhibited emission enhancement and lifetime extension, rendering them a novel series of luminescent probes for this receptor.  相似文献   

7.
Reaction of TpIr(C(2)H(4))(2) (Tp = tris-pyrazolylborate) with various chelating phosphine ligands has been explored. Reaction with bis-diphenylphosphinoethane leads to complete displacement of the Tp ligand. With bis-diphenylphosphinomethane, an intramolecular proton transfer from the methylene bridge to the iridium center occurs to give an iridium hydride complex formally resulting from oxidative C-H bond activation. Reaction with 2,2-bis(diphenylphosphino)propane (dppip) affords an Ir(I) complex formulated as kappa(2)-TpIr(dppip). Protonation of this Ir(I) complex gives a six coordinate Ir(III) hydride species.  相似文献   

8.
The reaction of bis(2-bromoethyl)selenium dibromide (1a) with 1,5-hexadiene (2) in methanol or ethanol affords 2,5-bis(alkoxymethyl)tetrahydroselenophene-1,1-dibromides (R = CH3 (3b), R = C2H5 (3c)) via 2,5-bis(bromomethyl)tetrahydroselenophene-1,1-dibromide (3a). The reaction of 1a with 2 in 1-propanol, 2-methyl-1-propanol or 1-butanol in the presence of sodium carbonate gave 2,5-bis(alkoxymethyl)tetrahydroselenophene (R = C3H7 (4a), R = (CH3)2CHCH2 (4b) and R = C4H9 (4c)) via 3a. The ratios of the trans and cis isomers of 3a–3c are 3:2. In addition, the structure of trans-2,5-bis(methoxymethyl)tetrahydroselenophene-1,1-dibromide (trans-3b) was determined by X-ray crystallography.  相似文献   

9.
李早英  梁江林  李聪 《中国化学》2000,18(4):565-570
Reaction of chiral 2,2'-biamino-1,1'-binaphthalene (R or 5) with monosubstituted porphyrin 1b and 2b-c afforded novel chiral diporphyrins 3a-c and 4a-c. Their dimetal complexes [(M)2DiPor] have also been prepared. Both structures have been identified by MS, IR, UV-visible, 1H NMR spectra and elemental analysis. These novel chiral compounds show very high optical activities.  相似文献   

10.
The straightforward reaction of 2‐bromopyridine with a PH3/H2 system (generated from phosphorus red and aqueous alkali) in the superbasic KOH/DMSO/(H2O) suspension under mild conditions (70°C, 1.5 h, atmospheric pressure) affords selectively and cleanly tris(2‐pyridyl)phosphine in 50% yield; no admixtures of the expected primary and secondary pyridylphosphines were observed in the crude product. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:411–414, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21030  相似文献   

11.
Phosphonoketene dithioacetals 3a-e were obtained in good yields by the reaction of ethyl phosphonoacetates 1a,b with 2-4 equiv of thiols 2a-c in the presence of an alkylaluminum dichloride or dialkylaluminum chlorides. Reaction of 2,2-dithio-1-phosphonovinyl anions with aldehydes afforded allylic alcohols 4-7, 11-18 in good to moderate yields. Treatment of the alcohols 4-6 with t-BuOK in THF led to symmetrical [2 + 2] cycloadducts 20-22 of 1,1-(ethylenedithio)allenes in moderate yields, while a similar reaction of the alcohols 11-13 produced a mixture of symmetrical and unsymmetrical [2 + 2] cycloadducts of 1,1-(trimethylenedithio)allenes,23a-25a and 23b-25b, in 55-94% yields. The alcohol 15 on a similar treatment gave 3-tert-butyl-1,1-bis(ethylthio)allene (26) in quantitative yield. The structures of 20 and 23b were determined by X-ray analysis. Treatment of the alcohols 15 and 18 with trifluoromethanesulfonic acid/n-Bu(4)NX (X = Br, I) or triphenylphosphine/CBr(4) in CH(2)Cl(2) afforded alpha-phosphonodithioacryclic acid esters 34 and 35 in 25-52% yields. The tandem Michael-Wittig reaction of 35 with sodium salt of 2-pyrrolecarbaldehyde in DMF gave ethyl 3-phenyl-3H-cyclopenta[a]pyrrole-2-dithiocarboxylate (36) in 25% yield.  相似文献   

12.
Reaction of the dimeric species [(eta3-Ind)Pd(mu-Cl)]2 (1) (Ind = indenyl) with NEt3 gives the complex (eta(3-5)-Ind)Pd(NEt3)Cl (3), whereas the analogous reactions with BnNH2 (Bn = PhCH2) or pyridine (py) afford the complexes trans-L2Pd(eta1-Ind)Cl (L = BnNH2 (4), py (5)). Similarly, the one-pot reaction of 1 with a mixture of BnNH2 and the phosphine ligands PR3 gives the mixed-ligand, amino and phosphine species (PR3)(BnNH2)Pd(eta1-Ind)Cl (R = Cy (6a), Ph (6b)); the latter complexes can also be prepared by addition of BnNH2 to (eta(3-5)-Ind)Pd(PR3)Cl (R = Cy (2a), Ph (2b)). Complexes 6 undergo a gradual decomposition in solution to generate the dinuclear Pd(I) compounds (mu,eta3-Ind)(mu-Cl)Pd2(PR3)2 (R = Cy (7a), Ph (7b)) and the Pd(II) compounds (BnNH2)(PR3)PdCl2 (R = Cy (8a), Ph (8b)), along with 1,1'-biindene. The formation of 7 is proposed to proceed by a comproportionation reaction between in situ-generated Pd(II) and Pd0 intermediates. Interestingly, the reverse of this reaction, disproportionation, also occurs spontaneously to give 2. All new compounds have been characterized by NMR spectroscopy and, in the case of 3, 4, 5, 6a, 7a, 7b, and 8a, by X-ray crystallography.  相似文献   

13.
The reaction of [8,8-(PPh(3))(2)-nido-8,7-RhSB(9)H(10)] (1) with PR(3) in a 1:2 ratio affords mixtures that contain the mono-substituted bis-PR(3)-ligated rhodathiaboranes [8,8-(PPh(3))(L)-nido-8,7-RhSB(9)H(10)] [L = PMe(2)Ph (5), PMe(3) (6)] and the corresponding tris-PR(3)-ligated compounds [8,8,8-(L)(3)-nido-8,7-RhSB(9)H(10)] [L = PMe(2)Ph (7), PMe(3) (8)]. These latter species are more conveniently prepared from the reaction of 1 with three equivalents of the monodentate phosphines, PMe(2)Ph and PMe(3). Reaction between 1 and PMePh(2) in a 1:2 ratio yields the disubstituted rhodathiaborane [8,8-(PMePh(2))(2)-nido-8,7-RhSB(9)H(10)] (4), whereas the use of three equivalents of phosphine leads to the formation of B-ligated eleven-vertex [8,8,8-(PMePh(2))(2)(H)-nido-8,7-RhSB(9)H(9)-9-(PMePh(2))] (9). Compounds 4-9 have been characterized by NMR spectroscopy, and the structures of 8 and 9 confirmed by X-ray diffraction analyses. The characterization of the cluster compounds has been aided by the use of DFT calculations on some of the species. Variable-temperature NMR studies have demonstrated a lability of the PMePh(2) ligands in compounds 4 and 9, providing mechanistic insights about the ligand substitutional chemistry in these eleven-vertex rhodathiaboranes.  相似文献   

14.
Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R'P═NSiMe(3) [R' = R' = Me (2a); R' = Me, R' = Ph (2b); R' = R' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R'O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)). A mechanism is proposed for the unexpected formation of [4](+) in which the formation of the donor-stabilized adduct [3](+) occurs as the first step.  相似文献   

15.
Reaction of the novel thiopropyl-closo-1,2-carborane ligand bearing a pendant glycerol group HS(CH(2))(3)CB(10)H(10)CCH(2)OCH(CH(2)OH)(2)(L) with the labile platinum(ii) precursor [Pt(MeCN)(terpy)](OTf)(2)(terpy = 2,2':6',2'-terpyridine; OTf = trifluoromethanesulfonate) affords the highly water-soluble platinum(ii) complex [PtL(terpy)]OTf, the first example of a metal-carborane complex functionalised with a water-solubilising glycerol group.  相似文献   

16.
Reaction of yttrium and lanthanum trichloride with 1 equiv of sodium or potassium hydrotris(3,5-dimethylpyrazolyl)borate and 1 equiv of 2,2'-bipyridine gives good yields of the complexes [MCl(2)(Tp(Me2))(C(10)H(8)N(2))] (M = Y (1), La (2)). The analogous compounds with 1,10-phenanthroline, [MCl(2)(Tp(Me2))(C(12)H(8)N(2))] (M = Y (3), La (4)), have been obtained by a similar procedure. The solid-state structures of 2-4 were determined by single-crystal X-ray diffraction and revealed that the compounds are all seven-coordinate with capped octahedral geometry. In contrast, reaction of yttrium trichloride with 1 equiv of sodium hydrotris(3,5-dimethylpyrazolyl)borate in the presence of 1 equiv of neocuproine affords [YCl(3)(Tp(Me2))][Na(neoc)(3))] (5). Compounds 1 and 2 provide an entry for the synthesis of complexes containing the bipyridyl ligand in a radical anionic form or in a dianionic form. Reaction of 1 and 2 with an excess of sodium amalgam gives [Y(Tp(Me2))(bipy)(THF)(2)] (6) and [La(Tp(Me2))(2)(bipy)] (7), respectively. The structures of both compounds have been determined by X-ray crystallography. Compound 7 can be oxidized with iodine to give [La(Tp(Me2))(2)(bipy)]I (8).  相似文献   

17.
Direct phosphorylation of α-methylstyrene dimer with red phosphorus in KOH/DMSO superbasic system has provided the preparation of 4-methyl-2,4-diphenylpentylphosphonous acid (heating at 105°C for 3 h) or tris(4-methyl-2,4-diphenylpentyl)phosphine oxide (microwave irradiation, 15 min) in 21 and 38% yield, respectively.  相似文献   

18.
A new three-component reaction between alkyl aryl(hetaryl)ketoximes, acetylene, and aliphatic ketones in the superbasic systems KOH/DMSO and LiOH/CsF/DMSO (70-90 °C, initial acetylene pressure 13-15 atm, 5-60 min) affords novel 4-methylene-3-oxa-1-azabicyclo[3.1.0]hexanes in yields of up to 75%. Using KOH/DMSO, the side products of the reaction are O-vinylketoximes and 2-aryl(hetaryl)pyrroles, while with LiOH/CsF/DMSO, the reaction proves to be selective, only minor amounts of the corresponding alkyl aryl(hetaryl) ketones being detectable.  相似文献   

19.
Three series of P-chiral diphosphines based on ferrocene (1a-f, 2a-c) and biferrocenyl skeletons (3a-c), including novel ligands 1f and 3c, were employed in palladium-catalyzed allylic substitution reactions. Steric effects imposed by the phosphine residues were studied using C2-symmetrical donors 1 (1 = 1,1'-bis(arylphenylphosphino)ferrocene with aryl groups a = 1-naphthyl, b = 2-naphthyl, c = 2-anisyl, d = 2-biphenylyl, e = 9-phenanthryl, and f = ferrocenyl), whereas para-methoxy- and/or para-trifluoromethyl substitution of the phenyl moieties in 1a enabled investigation of ligand electronic effects applying ferrocenyl diphosphines 2a-c. Ligands 3 (3 = 2,2'-bis- (arylphenylphosphino)-1,1'-biferrocenyls with aryl substituents a,c = 1-naphthyl (diastereomers) and b = 2-biphenylyl) allowed for comparison of backbone structure effects (bite angle variation) in catalysis. Linear and cyclic allylic acetates served as substrates in typical test reactions; upon attack of soft carbon and nitrogen nucleophiles on (E)-1,3-diphenylprop-2-ene-1-yl acetate the respective malonate, amine, or imide products were obtained in enantioselectivities of up to 99% ee. A crystal structure analysis of a palladium 1,3-diphenyl-eta 3-allyl complex incorporating ligand (S,S)-1a revealed a marked distortion of the allyl fragment, herewith defining the regioselectivity of nucleophile addition.  相似文献   

20.
Reaction of (C6H3-2-AsPh2-n-Me)Li (n = 5 or 6) with [AuBr(AsPh3)] at -78 degrees C gives the corresponding cyclometallated gold(I) complexes [Au2[(mu-C6H3-n-Me)AsPh2]2] [n = 5, (1); n = 6, (9)]. 1 undergoes oxidative addition with halogens and with dibenzoyl peroxide to give digold(II) complexes [Au2X2[(mu-C6H3-5-Me)AsPh2]2] [X = Cl (2a), Br (2b), I (2c) and O2CPh (3)] containing a metal-metal bond between the 5d9 metal centres. Reaction of 2a with AgO2CMe or of 3 with C6F5Li gives the corresponding digold(II) complexes in which X = O2CMe (4) and C6F5 (6), respectively. The Au-Au distances increase in the order 4 < 2a < 2b < 2c < 6, following the covalent binding tendency of the axial ligand. Like the analogous phosphine complexes, 2a-2c and 6 in solution rearrange to form C-C coupled digold(I) complexes [Au2X2[mu-2,2-Ph2As(5,5-Me2C6H3C6H3)AsPh2]] [X = Cl (5a), X = Br (5b), X = I (5c) and C6F5 (7)] in which the gold atoms are linearly coordinated by As and X. In contrast, the products of oxidative additions to 9 depend markedly on the halogens. Reaction of 9 with chlorine gives the gold(I)-gold(III) complex, [ClAu[mu-2-Ph2As(C6H3-6-Me)]AuCl[(6-MeC6H3)-2-AsPh2]-kappa2As,C] (10), which contains a four-membered chelate ring, Ph2As(C6H3-6-Me), in the coordination sphere of the gold(III) atom. When 10 is heated, the ring is cleaved, the product being the digold(I) complex [ClAu[mu-2-Ph2As(C6H3-6-Me)]Au[AsPh2(2-Cl-3-Me-C6H3)]] (11). Reaction of 9 with bromine at 50 degrees C gives a monobromo digold(I) complex (12), which is similar to 11 except that the 2-position of the substituted aromatic ring bears hydrogen instead halogen. Reaction of 9 with iodine gives a mixture of a free tertiary arsine, (2-I-3-MeC6H3)AsPh2 (13), a digold diiodo compound (14) analogous to 11, and a gold(I)-gold(III) zwitterionic complex [I2Au(III)[(mu-C6H3-2-AsPh2-6-Me)]2Au(I)] (15) in which the bridging units are arranged head-to-head between the metal atoms. The structures of 2a-2c and 4-15 have been determined by single-crystal X-ray diffraction analysis. The different behaviour of 1 and 9 toward halogens mirrors that of their phosphine analogues; the 6-methyl substituent blocks C-C coupling of the aryl residues in the initially formed oxidative addition product. In the case of 9, the greater lability of the Au-As bond in the initial oxidative addition product may account for the more complex behaviour of this system compared with that of its phosphine analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号