首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have succeeded in synthesizing the Ni(III) complexes doped by Co(III) ions, [Ni(1-x)Co(x)(chxn)(2)Br]Br(2) (x = 0, 0.043, 0.093, and 0.118) by using an electrochemical oxidation method. The single-crystal reflectance spectrum of x = 0.118 shows an intense CT band about 0.5 eV, which is lower than that of [Ni(chxn)(2)Br]Br(2) (1.3 eV). The single-crystal electrical conductivities at room temperature of these compounds increase with increase of the amounts of doping of Co(III) ions. In the ESR spectra, peak-to-peak line widths DeltaH(pp) at room temperature change about 600 G in [Ni(chxn)(2)Br]Br(2) to 200 G in x = 0.118. Such a large x dependence of DeltaH(pp) seems to be ascribed to the increasing contribution from the increasing Curie spins which have smaller line width. Therefore, we have tuned the electronic structures of quasi-one-dimensional bromo-bridged Ni(III) complexes with strong electron correlations by doping of Co(III) ions.  相似文献   

2.
This article describes the electronic structure of the Co(III) doped Br bridged Ni(III) complexes, [Ni(1-x)Cox(chxn)2Br]Br2 (x = 0.01, 0.02, 0.05, and 0.11) by using a optical spectroscopy, scanning tunneling microscopy (STM), and electron spin resonance spectroscopy. In the optical reflectivity spectrum, the new band was formed at about 0.5 eV, which is reasonably recognized as the d(z2) band of doped Co(III) ions. In the STM images of [Ni(1-x)Cox(chxn)2Br]Br2, the bright spots attributable to the tunnel current from the Fermi level of the STM tip to the conduction band of the sample were observed. In addition, some brighter spots were also observed. Because the number of the brighter spots is in good agreement with that of doped Co species, the brighter spots can be assigned to doped Co(III) sites. These are reasonably explained by the tunnel current from the Fermi level of the tip to the d(z2) band of Co(III). The Curie spin concentration was gradually increased with increasing Co(III) ions, which is explained by the scissions of the S = 1/2 1D antiferromagnetic chains.  相似文献   

3.
This communication will describe the electron doping effect into Ni(III) complexes by Cu(II) ions, [Ni(1-x)Cu(x)(chxn)(2)Br]Br(2-x) (x = 0.038 and 0.101) by using an electrochemical oxidation method. A drastic increase of electrical conductivity as well as a new absorption band around 0.5 eV in single crystal reflectance spectra was observed by doping Cu(II) ions, indicating the electron doping was successfully made. An ESR result shows unpaired electrons locate in the d(x2-y2) orbitals of Cu(II) and have almost no interaction with those of other ions.  相似文献   

4.
The treatment of Cr(III)(X(4)SQ)(3) (SQ = o-semiquinonate; X = Cl and Br) with acetonitrile affords trans-Cr(III)(X(4)SQ)(X(4)Cat)(CH(3)CN)(2) (X = Cl (1) and Br (2)). In the presence of 2,2'-bipyridine (bpy) or 3,4,7,8-tetramethyl-1,10-phenanthrene (tmphen), the reaction affords Cr(III)(X(4)SQ)(X(4)Cat)(bpy).nCH(3)CN (X = Cl, n = 1 (3); X = Br, n = 0.5 (4)) or Cr(III)(X(4)SQ)(X(4)Cat)(tmphen) (X = Cl (5) and Br (6)), respectively. All of the complexes show a ligand-based mixed-valence (LBMV) state with SQ and Cat ligands. The LBMV state was confirmed by the presence of the interligand intervalence charge-transfer band. Spectroscopic studies in several solvent media demonstrate that the ligand dissociation included in the conversion of Cr(III)(X(4)SQ)(3) to 1-6 occurs only in solvents with relatively high polarity. On the basis of these results, the effects of solvent media were examined and an equilibrium, Cr(III)(X(4)SQ)(3) <--> Cr(III)(X(4)BQ)(X(4)SQ)(X(4)Cat) (BQ = o-benzoquinone), is proposed by assuming an interligand electron transfer induced by solvent polarity.  相似文献   

5.
Infrared and laser Raman spectral investigations of [Ni(II)(dppe)Cl2] and [Co(III)(dppe)2Cl2]PF6 have been made to determine the conformation and nature of bonding in Ni(II) and Co(III) dppe complexes. The stereochemistry of the two forms of these complexes has been confirmed. The role of steric interferences in cis-Planar [Ni(II)(dppe)Cl2] complex is interpreted in terms of reduction in symmetry upon coordination. The strong trans influence of the chelating dppe ligand is observed in the [Co(III)(dppe)2Cl2]PF6 complex. Both complexes exhibit the effect of crystalline field on molecular vibrations. The Fermi resonance overtone is also observed in these complexes.  相似文献   

6.
Coordinating properties of acetoxybenziporphyrin, (TPBPOAc)H, have been investigated for a number of metal ions. Insertion of Ni, Pd, and Fe results in the cleavage of the acetoxy group leading to complexes (TPBPO)Ni(II), (TPBPO)Pd(II), and (TPBPO)Fe(III)X containing a M-O bond. No cleavage is observed with Zn(II) and Cd(II), which form complexes (TPBPOAc)M(II)Cl, where M = Zn, Cd. (TPBPO)Ni(II) can also be obtained from the dication of hydroxybenziporphyrin, [(TPBPOH)H(3)]Cl(2), which is prepared by acid hydrolysis of the acetoxy compound. The diamagnetic (TPBPO)Ni(II) can be transformed into the paramagnetic (TPBPOAc)Ni(II)Cl in a reaction with acetyl chloride. X-ray structures have been determined for (TPBPO)Pd(II) and (TPBPOAc)Zn(II)Cl. In the palladium species, the phenolate moiety forms a strong bond to the Pd ion and an unusual interaction geometry is observed, enforced by the macrocyclic environment. Association of a TFA molecule to the phenolic oxygen does not cause significant structural changes in the (TPBPO)Pd(II) molecule. In (TPBPOAc)Zn(II)Cl, the metal ion weakly interacts with the phenolic fragment. The paramagnetic Fe(III) complexes, (TPBPO)Fe(III)X, have been investigated with (1)H NMR spectroscopy. The observed spectral patterns are consistent with the presence of a high-spin Fe(III) center and pi delocalization of spin density onto the phenoxide fragment. Each of the compounds (TPBPO)Fe(III)X exists in solution as a mixture of two isomers, which for X = I are shown to remain in a temperature-dependent equilibrium. The observed isomerism results from two nonequivalent orientations of the axial halide with respect to the puckered macrocyclic ring.  相似文献   

7.
The synthesis, X-ray data, and electronic structures of two manganese(III) 1D polymers ligated by tetrachlorocatechol, [Mn(2)(III)(H(2)L(1))(Cl(4)Cat)(4).2H(2)O](infinity) (1) and [Mn(2)(III)(H(2)L(2))(Cl(4)Cat)(4).2CH(3)CN.2H(2)O](infinity) (2), are reported. The electronic structures of the complexes have been determined by UV-vis-near-IR, IR, electron paramagnetic resonance (EPR), and magnetic susceptibility measurements. Both 1 and 2 are air stable in the solid state and in solution, unlike most of the previously reported o-quinone-chelated transition-metal complexes. Electronic spectroscopy exhibits a strong near-IR band near 1900 nm for both, suggesting the presence of a mixed-valence semiquinone-catecholate oxidation state of the catechol ligands, Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2), together with the pure catecholate forms. The presence of this isomer was further supported by EPR and magnetic susceptibility measurements. The complexes undergo intramolecular electron transfer (valence tautomerism) upon an increase of the temperature involving the equilibrium Mn(2)(III)(Cl(4)Cat)(2)(Cl(4)SQ)(2) <==> Mn(2)(II)(Cl(4)SQ)(4). This phenomenon is reversible and is studied in solution using UV-vis-near-IR spectroscopy.  相似文献   

8.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

9.
Chiou TW  Liaw WF 《Inorganic chemistry》2008,47(17):7908-7913
The unprecedented nickel(III) thiolate [Ni (III)(OR)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [R = Ph ( 1), Me ( 3)] containing the terminal Ni (III)-OR bond, characterized by UV-vis, electron paramagnetic resonance, cyclic voltammetry, and single-crystal X-ray diffraction, were isolated from the reaction of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) with 3 equiv of [Na][OPh] in tetrahydrofuran (THF)-CH 3CN and the reaction of complex 1 with 1 equiv of [Bu 4N][OMe] in THF-CH 3OH, respectively. Interestingly, the addition of complex 1 into the THF-CH 3OH solution of [Me 4N][OH] also yielded complex 3. In contrast to the inertness of complex [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) toward 1 equiv of [Na][OPh], the addition of 1 equiv of [Na][OMe] into a THF-CH 3CN solution of [Ni (III)(Cl)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) yielded the known [Ni (III)(CH 2CN)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) ( 4). At 77 K, complexes 1 and 3 exhibit a rhombic signal with g values of 2.31, 2.09, and 2.00 and of 2.28, 2.04, and 2.00, respectively, the characteristic g values of the known trigonal-bipyramidal Ni (III) [Ni (III)(L)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) (L = SePh, SEt, Cl) complexes. Compared to complexes [Ni (III)(EPh)(P(C 6H 3-3-SiMe 3-2-S) 3)] (-) [E = S ( 2), Se] dominated by one intense absorption band at 592 and 590 nm, respectively, the electronic spectrum of complex 1 coordinated by the less electron-donating phenoxide ligand displays a red shift to 603 nm. In a comparison of the Ni (III)-OMe bond length of 1.885(2) A found in complex 3, the longer Ni (III)-OPh bond distance of 1.910(3) A found in complex 1 may be attributed to the absence of sigma and pi donation from the [OPh]-coordinated ligand to the Ni (III) center.  相似文献   

10.
Molecular structures of 12 porphyrin analogues, Fe(III)(EtioP)X(1(a)-1(d)), Fe(III)(EtioCn)X(2(a)-2(d)), and Fe(III)(Etio-Pc)X(3(a)-3(d)), where X = F (a), Cl (b), Br (c), and I (d), are determined on the basis of X-ray crystallography. Combined analyses using M?ssbauer, (1)H NMR, and EPR spectroscopy as well as SQUID magnetometry have revealed that 3(d) exhibits a quite pure S = 3/2 spin state with a small amount of an S = 5/2 spin admixture. In contrast, all the other complexes show the S = 5/2 spin state with a small amount of the S = 3/2 spin admixture. The structural and spectroscopic data indicate a strong correlation between the spin states of the complexes and the core geometries such as Fe-N bond lengths, cavity areas, and DeltaFe values.  相似文献   

11.
Molecule-based magnetic materials are promising candidates for molecular spin qubits, which utilize spin relaxation behavior. Various kinds of transition metal complexes with S=1/2 have been reported to act as spin qubits with long spin-spin relaxation times (T2). However, the spin qubit properties of low-spin Ni(III) complexes are not as well known since Ni(III) compounds are often unstable. We report here the slow magnetic relaxation behavior and T2 values for three kinds of low-spin Ni(III) based complexes with S=1/2 under magnetically diluted conditions. [Ni(cyclam)X2]Y (cyclam=1,4,8,11-tetraazacyclotetradecane) with octahedral structures and [Ni(mnt)2] (mnt=maleonitriledithiolate) with a square-planar structure underwent slow magnetic relaxations in the presence of a dc magnetic bias field. From electron spin resonance (ESR) spectroscopy, the Ni(III) complexes exhibited observable T2, indicating that Ni(III) complexes are promising candidates for use as molecule-based spin qubits.  相似文献   

12.
A series of stable low spin Ru(III) complexes of the type [RuX2(EPh3)2(L)] (where E = P or As; X = Cl or Br; L = mono basic bidentate Schiff bases) have been synthesized and were characterized by analytical, spectral and electrochemical data. A distorted octahedral geometry has been proposed for all the complexes. These complexes catalyze oxidation of primary alcohols and secondary alcohol with high yields in the presence of N-methylmorpholine-N-oxide (NMO). The ruthenium(III) Schiff base complexes show growth inhibitory activity against the bacteria Staphylococcus aureus (209p) and E. coli ESS (2231).  相似文献   

13.
The complexes [M(2,2′-bipyridyl)X3], with M = Sb, Bi and X = Cl, Br, I, are characterized by long-wavelength metal-to-ligand charge-transfer (MLCT) bands which determine the colours of these compounds in the solid state. The energy of the MLCT bands depends on the reducing strength of the metal and the extent of sp mixing of the lone electron pair at the metal.  相似文献   

14.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

15.
Madhu V  Das SK 《Inorganic chemistry》2008,47(12):5055-5070
The synthesis, structural characterization, and properties of a new series of asymmetrically substituted bis(dithiolene) nickel(III) compounds [Bu4N][Ni(Phdt)2] (1) (Phdt = 2-Phenyl-1,2-dithiolate), [Bu4N][Ni(NO2Phdt)2] (2) (NO2Phdt = 2-( p-nitrophenyl)-1,2-dithiolate), [Bu4N][Ni(FPhdt)2] (3) (FPhdt = 2-( p-fluorophenyl)-1,2-dithiolate), [Bu4N][Ni(ClPhdt)2] (4) (ClPhdt = 2-( p-chlorophenyl)-1,2-dithiolate), and [Bu4N][Ni(BrPhdt)2] (5) (BrPhdt = 2-( p-bromophenyl)-1,2-dithiolate) have been described. All complexes 1- 5 exhibit absorptions in the near-infrared region; the shift of these absorption bands can be tuned by the choice of the substituents on the relevant dithiolene moieties. The substituents on the dithiolene moiety are also responsible for their structural diversities. The nature of the substituents on the dithiolene moiety play an important role in tuning the redox potentials along this series. The nitro derivative (compound 2) exhibits several redox couples in its cyclic voltammogram in contrast to the other compounds in this series. The synthesis and characterization of two asymmetrically halogen substituted tetrathiafulvalene (TTF) derivatives 4,4'-bis(4-chlorophenyl)-tetrathiafulvalene ClPhTTF (6) and 4,4'-bis(4-bromophenyl)-tetrathiafulvalene (BrPhTTF) (7) have been described. One of these compounds has been structurally characterized. Iodine treatment of the monoanionic Ni(III) compound [Bu4N][Ni(ClPhdt)2] (4) results in the formation of a neutral Ni(IV) complex [Ni(ClPhdt)2] (8). All monoanionic compounds 1- 5 are Ni(III) complexes, as evidenced by electron spin resonance spectroscopy. Interestingly, strong Cl...Cl interactions are observed in the solid state structures of the chlorinated compounds 6 and 8. Finally, the structural features of compound [Ni(ClPhdt)2] (8) and the TTF derivative ClPhTTF (6) are compared based on their enormous structural similarities, and the neutral compound [Ni(ClPhdt)2] (8) is classed as the "an inorganic counterpart of TTF".  相似文献   

16.
The NMR spectra of a series of beta-substituted iron(III) tetraphenylporphyrin (2-X-TPP) complexes have been studied to elucidate the relationship between the electron donating/withdrawing properties of the 2-substituent and the (1)H NMR spectral pattern. The electronic nature of the substituent has been significantly varied and covered the -0.6 to 0.8 Hammett constant range. Both high-spin and low-spin complexes of the general formula (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) have been investigated. The (1)H NMR data for the following substituents (X) have been reported: py(+), NO(2), CN, CH(3), BzO (C(6)H(5)COO), H, D, Br, Cl, CH(3), NH(2), NH(3)(+), NHCH(3), OH, and O(-). The (1)H NMR resonances for low-spin dicyano complexes have been completely assigned by a combination of two-dimensional COSY and NOESY experiments. In the case of selected high-spin complexes, the 3-H resonance has been identified by the selective deuteration of all but the 3-H position. The pattern of unambiguously assigned seven pyrrole resonances reflects the asymmetry imposed by 2-substitution and has been used as an unique (1)H NMR spectroscopic probe to map the spin density distribution. The pyrrole isotropic shifts of [(2-X-TPP)Fe(III)(CN)(2)](-) are dominated by the contact term. In order to quantify the substituent effect, the dependence of isotropic shift of all low-spin pyrrole resonances and 3-H high-spin pyrrole resonance versus Hammett constants has been studied. The electronic effect is strongly localized at the beta-substituted pyrrole. The major change of the isotropic shift has also been noted for only one of two adjacent pyrrole rings, i.e., at 7-H and 8-H positions. These neighboring protons, located on a single pyrrole ring, experienced opposite shift changes when electron withdrawing/donating properties were modified. Two other pyrrole rings for all investigated derivatives revealed considerably smaller, substituent related, isotropic shift changes. A long-range secondary isotopic shift has been observed for [(2-D-TPP)Fe(III)(CN)(2)](-). The effect is consistent with a general spin density distribution mechanism due to beta-substitution. A fairly good correlation between the 3-H isotropic shift of (2-X-TPP)Fe(III)Cl and the Hammett constant has been found as well. The observed contact shift pattern of [(2-X-TPP)Fe(III)(CN)(2)](-) reflects spin pi delocalization into the highest filled MO equivalent to the unsubstituted porphyrin 3e(pi) orbital. To account for the substituent contribution, the semiquantitative Fenske-Hall LCAO method has been used to determine the molecular orbitals involved in the spin density delocalization. For low-spin complexes, (13)C pyrrole resonances of carbons bearing a proton have been identified by means of a (1)H-(13)C HMQC experiment. The reversed order of (13)C resonance patterns as compared to their (1)H NMR counterparts has been determined, e.g., the largest isotropic shift of 3-H has been accompanied by the smallest measured (13)C isotropic shift. Analysis of the isotropic shifts in (2-X-TPP)Fe(III)Cl and [(2-X-TPP)Fe(III)(CN)(2)](-) suggests that the observed regularities of the electronic structure modification due to the beta-substitution should apply to iron(III) natural porphyrin or geoporphyrin complexes.  相似文献   

17.
Ru(III), Rh(III), Pt(IV) and Ir(III) complexes of 2-furfural thiosemicarbazone as ligand have been synthesised. These complexes have the composition [M(ligand)2X2]X (M = Ru(III) Rh(III) and Ir(III) X = Cl and Br) and [Pt(ligand)2 X2] X2 (X = Cl, Br and 1/2SO4). The deprotonated ligand forms the complexes of the formulae M(ligand-H)3 and Pt(ligand-H)3Cl. All these complexes have been characterized by elemental analysis, magnetic measurements, electronic and infrared spectral studies. All the complexes are six-coordinate octahedral.  相似文献   

18.
Aoki C  Ishida T  Nogami T 《Inorganic chemistry》2003,42(23):7616-7625
A new chelating radical ligand 4ImNNH (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide) was prepared, and complexation with divalent transition metal salts gave complexes, [M(4ImNNH)(2)X(2)], which showed intermolecular ferromagnetic interaction in high probability (7 out of 10 paramagnetic compounds investigated here). The nitrate complexes (X = NO(3); M = Mn (1), Co (2), Ni (3), Cu (4)) crystallize isomorphously in monoclinic space group P2(1)/a. The equatorial positions are occupied with two 4ImNNH chelates and the nitrate oxygen atoms are located at the axial positions. Magnetic measurements revealed that the intramolecular exchange couplings in 1, 2, and 4 were antiferromagnetic, while that in 3 was ferromagnetic with 2J/k(B) = +85 K, where the spin Hamiltonian is defined as H = -2J(S(1).S(2) + S(2).S(3)) based on the molecular structures determined as the linear radical-metal-radical triads. The intramolecular ferromagnetic interaction in 3 is interpreted in terms of orthogonality between the radical pi and metal dsigma orbitals. Compounds 1-3 exhibited intermolecular ferromagnetic interaction ascribable to a two-dimensional hydrogen bond network parallel to the crystallographic ab plane. Complex 3 became an antiferromagnet below 3.4 K and exhibited a metamagnetic transition on applying a magnetic field of 5.5 kOe at 1.8 K. The complexes prepared from metal halides, [M(4ImNNH)(2)X(2)] (X = Cl, Br; M = Mn, Co, Ni, Cu), showed intramolecular antiferromagnetic interactions, which are successfully analyzed based on the radical-metal-radical system. The crystal structures determined here on 1-4, [Mn(4ImNNH)(2)Cl(2)], and [Cu(4ImNNH)(2)Br(2)] always have intermolecular hydrogen bonds of H(imidazole).X(axial ligand)-M, where X = NO(3), Cl, Br. This interaction seems to play an important role in molecular packing and presumably also in magnetic coupling.  相似文献   

19.
This paper presents the structural features of ionic complexes formed by morpholine and metal ions which belong to group VA, namely Sb(III) and Bi(III). A series of target inorganic-organic hybrid compounds of the general formula [NH(2)(C(2)H(4))(2)O](2)MX(5) (where M = Sb, Bi; X = Cl, Br) has been synthesized by incorporating the organic component (morpholine) into the highly polarizable one-dimensional halogenoantimonate(III)/halogenobismuthate(III) chain network. Among the studied compounds, four were found to crystallize in the room temperature phase in the piezoelectric, orthorhombic space group P2(1)2(1)2(1), Z = 4, the feature being confirmed by the powder second harmonic generation of light and piezoelectric measurements. Dielectric dispersion studies between 200 Hz and 2 MHz disclosed a relaxation process below room temperature well described by the Cole-Cole equation. Based on crystal structures available in Cambridge Structural Database (version 5.32, November 2010) we attempt to show a relationship between the acentric symmetry of compounds and the type of anionic network within the R(2)MX(5)-subgroup (where R denotes organic cation) of halogenoantimonates(III) and halogenobismuthates(III).  相似文献   

20.
Mn(III)-Ni(II)-Mn(III) linear-type trinuclear complexes bridged by oximate groups were selectively synthesized by the assembly reaction of [Mn2(5-Rsaltmen)2(H2O)2](ClO4)2 (5-Rsaltmen2-=N,N'-(1,1,2,2-tetramethylethylene) bis(5-R-salicylideneiminate); R=Cl, Br) with [Ni(pao)2(phen)] (pao-=pyridine-2-aldoximate; phen=1,10-phenanthroline) in methanol/water: [Mn2(5-Rsaltmen)2Ni(pao)2(phen)](ClO4)2 (R=Cl, 1; R=Br, 2). Structural analysis revealed that the [Mn(III)-ON-Ni(II)-NO-Mn(III)] skeleton of these trimers is in every respect similar to the repeating unit found in the previously reported series of 1D materials [Mn2(saltmen)2Ni(pao)2(L1)2](A)(2) (L(1)=pyridine, 4-picoline, 4-tert-butylpyridine, N-methylimidazole; A=ClO4-, BF4-, PF6-, ReO4-). Recently, these 1D compounds have attracted a great deal of attention for their magnetic properties, since they exhibit slow relaxation of the magnetization (also called single-chain magnet (SCM) behavior). This unique magnetic behavior was explained in the framework of Glauber's theory, generalized for chains of ferromagnetically coupled anisotropic spins. Thus, in these 1D compounds, the [Mn(III)-ON-Ni(II)-NO-Mn(III)] unit was considered as an S(T)=3 anisotropic spin. Direct-current magnetic measurements on 1 and 2 confirm their S(T)=3 ground state and strong uniaxial anisotropy (D/k(B) approximately -2.4 K), in excellent agreement with the magnetic characteristic deduced in the study on the SCM series. The ac magnetic susceptibility of these trimers is strongly frequency-dependent and characteristic of single-molecule magnet (SMM) behavior. The relaxation time tau shows a thermally activated (Arrhenius) behavior with tau0 approximately 1x10(-7) s and Delta(eff)/k(B) approximately 18 K. The effective energy barrier for reversal of the magnetization Delta(eff) is consistent with the theoretical value (21 K) estimated from |D| S2T. The present results reinforce consistently the interpretation of the SCM behavior observed in the [Mn2(saltmen)2Ni(pao)2(L1)2](A)2 series and opens new perspectives to design single-chain magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号