首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2D crystal lattice structure and bias-dependent contrast of a chiral electron donor-acceptor-donor triad system, composed of two oligo(p-phenylene vinylene) electron donors and a perylenediimide electron acceptor (OPV4-PDI-OPV4), have been studied by means of scanning tunneling microscopy (STM) at the liquid-graphite interface. OPV4-PDI-OPV4 is ordered in rows and forms a well-ordered 2D crystal lattice structure. The electrical properties of the donor and acceptor parts are distinguished by the contrast in bias-dependent STM imaging.  相似文献   

2.
本文以高分子聚合物(F127)为模板, 以强疏水的1,3,5-三甲基苯为有机添加物, 通过旋转覆膜的方法制备出具有多级复合孔的二氧化钛晶体薄膜, 并采用TEM和SEM对样品结构进行了分析, 同时考察了这种薄膜对DNA分子的吸附性能.  相似文献   

3.
A Suzuki polycondensation reaction has been used to synthesize two copolymers consisting of alternating oligo(p-phenylene vinylene) (OPV) donor and perylene bisimide (PERY) acceptor chromophores. The copolymers differ by the length of the saturated spacer that connects the OPV and PERY units. Photoinduced singlet energy transfer and photoinduced charge separation in these polychromophores have been studied in solution and in the solid state via photoluminescence and femtosecond pump-probe spectroscopy. In both polymers a photoinduced electron transfer occurs within a few picoseconds after excitation of the OPV or the PERY chromophore. The electron transfer from OPV excited state competes with a singlet energy transfer state to the PERY chromophore. The differences in rate constants for the electron- and energy-transfer processes are discussed on the basis of correlated quantum-chemical calculations and in terms of conformational preferences and folding of the two polymers. In solution, the lifetime of the charge-separated state is longer than in the films where geminate recombination is much faster. However, in the films some charges are able to escape from geminate recombination and diffuse away and can be collected at the electrodes when the polymers are incorporated in a photovoltaic device.  相似文献   

4.
Novel hybrid materials containing silicate and charged oligo(p-phenylene vinylene) (OPV) amphiphiles were fabricated in one step by spin casting using evaporation-induced self assembly. The conjugated segments were substituted with trimethylammonium bromide groups at both termini, and tetraethyl orthosilicate served as the silicate precursor. X-ray diffraction scans of the hybrid films revealed Bragg diffraction peaks with d-spacings of 2.76 and 1.37 nm, indicating the presence of order in the hybrid structure. Optical properties of the hybrid films were characterized by UV-vis absorption and fluorescence spectra, and molecular orientation was characterized by IR spectroscopy. A rhodamine B derivative containing a triethoxysilane group was covalently incorporated into the silicate network of the films during the sol-gel reaction. Relative to disordered polymer films with identical organic composition, the ordered hybrid films revealed significantly enhanced emission from rhodamine B and also fluorescence quenching from OPV segments. These results indicate that the ordered and nanostructured environment leads to highly efficient energy transfer among organic components in these hybrid films.  相似文献   

5.
Control of thin film morphology by self-assembly of, respectively, p-type oligo(p-phenylenevinylene)s (OPV)s and n-type perylenebisimides (PBI)s in solution prior to processing, results in film architectures consisting of uniform rodlike domains as shown by atomic force microscopy. Such films from self-assembled molecules show superior charge-carrier mobility in comparison with films processed from molecular dissolved molecules. Moreover, connecting the OPV and PBI building blocks through hydrogen-bonding interactions creates dyad complexes that cofacially stack in apolar solvents. Ambipolar field-effect transistors constructed from these dyad complexes show two independent pathways for charge transport. In strong contrast, processing of OPV and PBI, that are not connected by hydrogen bonds, form charge transfer donor-acceptor complexes that show no mobility in field-effect transistors presumably due to an unfavorable supramolecular organization.  相似文献   

6.
An oligo(p-phenylenevinylene) (OPV)-substituted hexaarylbenzene has been synthesized and fully characterized. Recycling gel permeation chromatography appeared to be a powerful technique to obtain the OPV molecules in a very pure form. X-ray analysis and polarization optical microscopy revealed that the OPV molecule is plastic crystalline at room temperature with an ordered columnar superstructure. In apolar solvents, the molecules self-assemble via a highly cooperative fashion into right-handed chiral superstructures, which are stable even at high temperatures and low concentration. Atomic force microscopy revealed right-handed fibers with a diameter of 6 nm, indicating pi-stacked aggregates; on a silicon oxide substrate, supercoiled chiral structures were observed. STM studies on a liquid-solid interface showed that the star-shaped OPV molecule forms an organized monolayer having a chiral hexagonal lattice.  相似文献   

7.
Excitation energy migration (EM) and assisted energy transfer (ET) properties of a few oligo(p-phenylenevinylene) (OPV) based organogelators with different end functional groups have been studied using picosecond time-resolved emission spectroscopy (TRES). EM was found to be more efficient in OPV gelators with small end functional groups (OPV3-4) when compared to that of the gelators with bulky end groups (OPV1-2) in the gel state. TRES studies at elevated temperature and in chloroform solution highlight the role of the self-assembled scaffolds in assisting the EM and ET processes. Increase in temperature and solvent polarity leads to the aggregate breaking and hence adversely affects the EM and ET efficiencies. The effect of EM efficiency on the fluorescence resonance energy transfer (FRET) properties of the OPV gels was studied by using OPV1 and OPV3 as the donors and OPV5 as the acceptor. Better transfer of excitation energy was observed in the donor system (OPV3) having higher EM efficiency even at very low concentration (3.1 mol%) of the acceptor molecules, whereas ET efficiency was lower in the donor system (OPV1) with low EM efficiency.  相似文献   

8.
Large polycyclic aromatic hydrocarbons (PAHs) can be considered as nanographenes, whose electron donating or accepting properties are controlled by their size and shape as well as functionalities in their periphery. Epitaxial thin films of them are targets for optoelectronic applications; however, large PAHs are increasingly difficult to process. Here we show that epitaxial layers of very large unsubstituted PAHs (C(42)H(18) and C(132)H(34)), as well as a mixed layer of C(42)H(18) with an electron acceptor, can be obtained by self-assembly from solution. The C(132)H(34) is by far the largest nanographene that up to now has been processed into ordered thin films; due to its size it cannot be sublimed in a vacuum. Scanning tunneling microscopy (STM) studies reveal that the interaction with the substrate induces a strong perturbation of the electronic structure of the pure donor in the first epitaxial monolayer. In a second epitaxial layer with a donor acceptor stoichiometry of 2:1 the molecules are unperturbed.  相似文献   

9.
We introduce a simple method to create nanosized, ordered, and highly luminescent thin film of Eu (III)–block copolymer complex. Micelles of polystyrene–block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) in P4VP‐selective solvents (ethanol/N,N‐dimethylformamide (DMF) mixture) serve as nanoreactors for the synthesis of Eu(III)–block copolymer complex with the presence of 1,10‐phenanthroline (Phen) as cooperative ligand. The resulted quaternary complexes were characterized by FT‐IR spectra, 15N NMR spectra, and elemental analysis, indicative of a composition of Eu(III)–(PS‐b‐P4VP)–Phen–5DMF. Atomic force microscopy and transmission electron microscopy investigations reveal that the Eu(III)–(PS‐b‐P4VP)–Phen–5DMF complex can self‐organize into hexagonally ordered thin films when dip‐coated from the solution onto silicon or silica glass substrates. Such ordered thin films can emit red fluorescence of Eu3+ with strong intensity and long lifetime. This method can be easily extended to prepare other ordered luminescent rare earth–polymer complexes thin films. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2181–2189, 2005  相似文献   

10.
We describe the synthesis, supramolecular ordering on surfaces and in solution, and photophysical characterization of OPV4UT-PERY, an oligo(p-phenylenevinylene) (OPV) with a covalently attached perylene bisimide moiety. In chloroform, the molecule forms dimers through quadruple hydrogen bonding of the ureido-s-triazine array. This is supported by scanning tunneling microscopy (STM) studies, which reveal dimer formation at the liquid (1,2,4-trichlorobenzene)/solid (graphite) interface. Moreover, contrast reversal in bias-dependent STM imaging provides information on the ordering and different electronic properties of the oligo(p-phenylenevinylene) and perylene bisimide moieties. In dodecane, the molecule self-assembles into H-type aggregates that are still soluble as a result of the hydrophobic shell formed by the dodecyloxy wedges. The donor-acceptor molecule is characterized by efficient energy transfer from the photoexcited OPV to the perylene bisimide. Mixed assemblies with analogous OPVs lacking the perylene bisimide unit have been prepared in dodecane solution and energy transfer to the incorporated perylene bisimides has been studied by fluorescence spectroscopy.  相似文献   

11.
Self-assembly processes and subsequent photo-cross-linking were used to generate cross-linked, ordered microporous structures on the surfaces of well defined four-arm star-shaped poly(D,L-lactide) (PDLLA) thin films. The four-arm star-shaped PDLLAs were synthesized using an ethoxylated pentaerythritol initiator. Solutions of the PDLLAs were cast in a humid environment, and upon solvent evaporation, ordered honeycomb structures (or breath figures) were obtained. Correlations between molar mass, polymer solution viscosity, and pore dimensions were established. The average pore dimension decreased with increasing polymer solution concentration, and a linear relationship was observed between relative humidity and average pore dimensions. Highly ordered microporous structures were also developed on four-arm star-shaped methacrylate-modified PDLLA (PDLLA-UM) thin films. Subsequent photo-cross-linking resulted in more stable PDLLA porous films. The photo-cross-linked films were insoluble, and the honeycomb structures were retained despite solvent exposure. Free-standing, structured PDLLA-UM thin films were obtained upon drying for 24 h. Ordered microporous films based on biocompatible and biodegradable polymers, such as PDLLA, offer potential applications in biosensing and biomedical applications.  相似文献   

12.
采用化学水浴沉积法(CBD)在钠钙玻璃衬底上制备硫化镉(CdS)薄膜,研究不同硫酸镉(CdSO_4)浓度下产生的本征缺陷对CdS薄膜光电学性质的影响。采用光致发光光谱、紫外-可见分光光度计及霍尔效应测试系统对薄膜的本征缺陷、光学及电学性质进行分析,发现CdS薄膜主要存在镉间隙(Cdi)及硫空位(VS)等本征缺陷,且VS随CdSO_4浓度的降低而逐渐减少。同时,VS缺陷的减少有利于薄膜透过率的提高,但在一定程度上降低了薄膜的电导率。根据透过率及其相关公式可知,半导体材料中透过率与电导率成e指数反比关系,适当减小薄膜的电导率可以使其透过率得到大幅度的提高,理论解释与实验结果相一致。  相似文献   

13.
Poly(propylene glycol) (PPG) of moderately high molecular weight (M(n) = 3500 Da) exhibits amphibious behavior in aqueous solution in that it is hydrophilic at low temperature but hydrophobic at high temperature. This property is utilized to generate porous titania thin films with a hierarchical structure consisting of macroporous voids/cracks in films with mesoporous walls. The smaller mesopores result from the self-assembly of the Pluronic block copolymer P123 to form micellar templates in well-ordered arrays with hexagonal symmetry. The larger pores are generated from the phase separation of PPG during aging of the films. The PPG acts to a limited degree as a swelling agent for the P123 micelles, but because the films are aged at a low temperature where PPG is hydrophilic, much of the PPG remains in the polar titania phase. Upon heating, the PPG phase separates to form randomly dispersed, large pores throughout the film while retaining the ordered mesoporous P123-templated structure in the matrix of the material. TEM and SEM imaging confirm that calcined titania thin films have interconnected hierarchical porous structures consisting of ordered mesopores 4-12 nm in diameter and macroporous voids >100 nm in size. The density and size of the voids increase as more PPG is added to the films.  相似文献   

14.
Polycrystalline La(2)NiMnO(6) thin films are prepared on Pt/Ti/SiO(2)/Si substrates by the sol-gel method. Through controlling the processing parameters, the cation ordering can be tuned. The disordered and ordered thin films exhibit distinct differences for crystal structures as well as properties. The crystal structure at room temperature characterized by X-ray diffraction and Raman spectra is suggested to be monoclinic (P2(1)/n) and orthorhombic (Pbnm) for the ordered and disordered thin films, respectively. The ferromagnetic-paramagnetic transition is 263 K and 60 K for the ordered and disordered samples respectively, whereas the saturation magnetic moment at 5 K is 4.9 μ(B) fu(-1) (fu = formula unit) and 0.9 μ(B) fu(-1). The dielectric constant as well as magnetodielectric effect is higher for the ordered La(2)NiMnO(6) thin films. The magnetodielectric effect for the ordered thin film is dominantly contributed to the intrinsic coupling of electric dipole ordering and fluctuations and magnetic ordering and fluctuations, while it is mainly contributed to Maxwell-Wagner (M-W) effects for the disordered thin film. The successful achievements of ordered and disordered polycrystalline La(2)NiMnO(6) thin films will provide an effective route to fabricate double-perovskite polycrystalline thin films by the sol-gel method.  相似文献   

15.
Growth of ordered perylene thin films on the Ag(110) surface has been investigated with scanning tunneling microscope. By saturating the surface with a monolayer of perylene molecules, two kinds of ordered structures are simultaneously formed with flat-lying perylene molecules on the Ag(110) surface, in which one is commensurate relative to the Ag substrate with a periodicity of while the other is commensurate with a periodicity of (-2724). There is one molecule within the former unit cell with a surface coverage of 0.1 molecule per Ag atom, while there are two molecules within the latter unit cell, which gives a slightly lower surface coverage of 0.091 molecule per Ag atom. Ab initio calculations have been carried out to identify the adsorption geometry and bonding sites.  相似文献   

16.
The design and synthesis of highly efficient deep red (DR) and near‐infrared (NIR) organic emitting materials with characteristic of thermally activated delayed fluorescence (TADF) still remains a great challenge. A strategy was developed to construct TADF organic solid films with strong DR or NIR emission feature. The triphenylamine (TPA) and quinoxaline‐6,7‐dicarbonitrile (QCN) were employed as electron donor (D) and acceptor (A), respectively, to synthesize a TADF compound, TPA‐QCN. The TPA‐QCN molecule with orange‐red emission in solution was employed as a dopant to prepare DR and NIR luminescent solid thin films. The high doped concentration and neat films exhibited efficient DR and NIR emissions, respectively. The highly efficient DR and NIR organic light‐emitting devices (OLEDs) were fabricated by regulating TPA‐QCN dopant concentration in the emitting layers.  相似文献   

17.
A high‐temperature solution blending process has been used to synthesize a series of copolymers incorporating varying mole ratios of perylenebisimide (PBI) into the backbone of an engineering thermoplastic polyester [poly(1,4‐cyclohexylenedimethylene‐1,4‐cyclohexanedicarboxylate)] (PCCD). A random donor–acceptor copolymer incorporating oligo(p‐phenylene vinylene) (OPV) and PBI was also synthesized. The chemical incorporation of these chromophores into PCCD was confirmed by carrying out the melt condensation using 1,4‐cyclohexanedimethanol and 1,4‐dimethylcyclohexane dicarboxylate with hydroxyl‐functionalized PBI and OPV derivatives. Higher extent of incorporation of PBI (35 mol %) could be achieved using the blending approach retaining solubility, film‐forming ability, and higher molecular weights. The PBI polymers produced using the two different approaches exhibited structural variations. The polymers formed from the solution blending approach had a semicrystalline nature with blocks of PCCD separating the PBI units, whereas those produced using the melt condensation route were amorphous polymers. This structural variation was reflected in their photophysical properties also with the reactive solution‐blended polymers exhibiting higher fluorescence quantum yields. These results demonstrate the easy incorporation of suitably functionalized donor and acceptor moieties into a completely aliphatic polyester backbone to produce free‐standing films of hitherto nonprocessable polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
We report on the charge transport and injection phenomena of (E,E,E,E)‐1,4‐bis[(4‐styryl)styryl]‐2‐methoxy‐5‐(2′‐ethylhexoxy)benzene (MEH‐OPV5) sandwiched between asymmetric contacts. The hole mobility of MEH‐OPV5 was determined by means of transient electroluminescence. The steady‐state current was injection‐limited. The electric field and temperature dependence of the current were quantitatively described by a phenomenological injection model of thermally assisted charge‐carrier tunneling in a one‐dimensional chain of hopping sites. Furthermore, we report on the photovoltaic properties of thin‐film photovoltaic cells on the basis of donor–acceptor heterojunctions. MEH‐OPV5 and buckminster fullerene were used as the donor and acceptor materials, respectively. The emphasis was on the role of morphology in such devices. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2665–2673, 2003  相似文献   

19.
Liu WJ  Zhou Y  Ma Y  Cao Y  Wang J  Pei J 《Organic letters》2007,9(21):4187-4190
A facile synthesis of air-stable anthra[1,2-b:4,3-b':5,6-b':8,7-b']tetrathiophene derivatives 1a and 1b has been developed for applications in organic thin film transistors. Both molecules tend to self-associate through pi-pi stacking in solution and in different films. The hole mobility of 0.012 cm2 V(-1) s(-1) is obtained from 1a due to morphology changes in films from less ordered to highly ordered structures after thermal annealing. Good performance remained persistent over a period of 14 days, indicating the high stability of such transistors.  相似文献   

20.
Six novel benzimidazole-based D-π-A compounds 4 a – 4 f were concisely synthesized by attaching different donor/acceptor units to the skeleton of 1,3-bis(1H-benzimidazol-2-yl)benzene on its 5-position through an ethynyl link. Due to the twisted conformation and effective conjugation structure, these dual-state emission (DSE) molecules show intense and multifarious photoluminescence, and their fluorescence quantum yields in solution and solid state can be up to 96.16 and 69.82 %, respectively. Especially, for excellent photostability, obvious solvatofluorochromic and extraordinary wide range of solvent compatibility, DSE molecule 4 a is a multifunctional fluorescent probe for the visual detection of nitroaromatic compounds (NACs) with the limit of detection as low as 10−7 M. The quenching mechanism has been proved as the results of photoinduced electron transfer and fluorescence resonance energy transfer processes. Importantly, probe 4 a can sensitively detect NACs not only in real water samples, but also on 4 a -coated strips and 4 a @PBAT thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号