首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈兴旺  施保昌 《中国物理》2005,14(7):1398-1406
绝大多数现有的格子波尔兹曼磁流体动力学模型其实是用可压缩方法来模拟不可压磁流体。而这些可压缩效应在数值模拟中往往会带来意想不到的误差。在这篇文章中,我们提出了一个全新的可用于的不可压格子波尔兹曼磁流体动力学模型,并且进行了哈特曼流的数值模拟。模拟结果与哈特曼流的解析解非常吻合。这个方法需要一个假设条件来消除误差。我们做了大量的数值试验,并且与Dellar教授的模型进行了详细的分析与比较。  相似文献   

2.
周军  蔡力  周凤岐 《中国物理 B》2008,17(5):1535-1544
We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme.  相似文献   

3.
It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.  相似文献   

4.
不可压缩等离子体的2维磁场重联模型   总被引:1,自引:1,他引:0       下载免费PDF全文
提出了一种2维磁场重联模型。磁场重联过程中的电荷分离在等离子体中产生静电场,等离子体在电场中的漂移运动可以解释阿尔芬速度量级的出流。该磁场重联模型给出如下结论:Sweet-Parker模型描述的重联率强烈地依赖于电子质量与离子质量之比;反常电阻率正比于离子惯性长度和电流片宽度比值的平方; 相对论效应和高温等离子体中电子-正电子对的产生可以提高重联率; 电磁波的激发对于磁能的损耗是必要的。  相似文献   

5.
A unified lattice Bhatnagar-Gross-Krook (ILBGK) model iDdQq for the incompressible Navier-Stokes equation is presented. To test its efficiency, the lid-driven cavity flow in three-dimensional space for Reynolds number Re=3200 and span aspect ratio SAR=1, 2 and 3 is simulated in detail on a 48×48×(48×SAR) uniform lattice using the model. The test results agree well with those in previous experiments and numerical works and show the efficiency and strong numerical stability of the proposed ILBGK model.  相似文献   

6.
We consider a Hamiltonian paticle system interacting by means of a pair potetial. We look at the behavior of the system on a space scale of order -1, times of order -2 and mean velocities of order , with a scale parameter. Assuming that the phase space density of the particles is give by a series in (the analog of the Chapman-Enskog expansion), the behavior of the system under this rescaling is described, to the lowest order in , by the incompressible Navier-Stokes equations. The viscosity is given in terms of microscopic correlations, and its expression agrees with the Green-Kubo formula.  相似文献   

7.
付峥  吴士玉  刘凯欣 《中国物理 B》2016,25(6):64701-064701
Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.  相似文献   

8.
A class of dynamic cavitations is examined for an isotropic incompressible hyperelastic circular sheet under a pre-strained state caused by an initially applied finite radial tension.The solutions that describe the radially symmetric motion of the pre-strained sheet are obtained.The conditions of cavitated bifurcation that describe cavity formation and motion with time at the axial line of the pre-strained sheet are proposed,that is to say,a circular cavity will form if the suddenly applied radial tensile l...  相似文献   

9.
邱流潮 《物理学报》2013,62(12):124702-124702
应用基于投影算法的不可压缩光滑粒子动力学(incompressible smoothed particle hydrodynamics, ISPH)法对黏性液滴变形过程进行了数值仿真. 对于张力失稳导致的粒子非物理簇集问题, 采用粒子移位技术加以解决. 为了验证本文ISPH 算法的精度和稳定性, 分别模拟了圆形黏性液滴的拉伸变形过程以及方形液滴的旋转变形过程, 得到了不同时刻液滴内部的压力变化特征, 准确地捕捉了液滴自由面演化过程, 并将数值计算结果与文献中的解析解进行了比较.分析结果表明, 基于投影算法的不可压缩光滑粒子动力学方法结合粒子移位技术, 能够有效地模拟黏性液滴变形过程, 可以得到精确和稳定的结果. 关键词: 不可压缩光滑粒子动力学 黏性液滴 自由面流动 数值仿真  相似文献   

10.
雷娟棉  杨浩  黄灿 《物理学报》2014,63(22):224701-224701
为了对比研究弱可压光滑粒子动力学(WCSPH)方法和不可压光滑粒子动 力学(ISPH)方法在模拟封闭方腔自然对流问题时的特性, 采用粒子位移技术有效地解决了高瑞利数条件下, 拉格朗日型SPH方法模拟封闭方腔自然对流时流体域内的粒子聚集和空穴问题, 将拉格朗日型SPH 方法求解封闭方腔自然对流问题的最高瑞利数提高到了106; 进而通过对比瑞利数分别为104, 105, 106的条件下, 采用拉格朗日型WCSPH、 拉格朗日型ISPH、欧拉型ISPH三种SPH方法模拟得到的封闭方腔速度分布云图、 温度分布云图、壁面努赛尔特数分布曲线和平均努塞尔特数, 分析了三种SPH方法在模拟封闭方腔自然对流时的精度、稳定性和计算效率. 结果表明: 在低瑞利数条件下, 以上三种SPH方法都可以较好地模拟此问题, 在高瑞利数条件下, 欧拉型ISPH方法的模拟结果最为精确; 拉格朗日型WCSPH方法模拟所得结果比拉格朗日型ISPH方法模拟所得结果稍好些. 关键词: 光滑粒子动力学 不可压光滑粒子动力学 粒子位移技术 自然对流  相似文献   

11.
熊渊博  王浩 《中国物理》2006,15(10):2352-2356
Generally the incompressible viscous flow problem is described by the Navier--Stokes equation. Based on the weighted residual method the discrete formulation of element-free Galerkin is inferred in this paper. By the step-by-step computation in the field of time, and adopting the least-square estimation of the-same-order shift, this paper has calculated both velocity and pressure from the decoupling independent equations. Each time fraction Newton--Raphson iterative method is applied for the velocity and pressure. Finally, this paper puts the method into practice of the shear-drive cavity flow, verifying the validity, high accuracy and stability.  相似文献   

12.
Efficient computation of compressible and incompressible flows   总被引:1,自引:0,他引:1  
The combination of explicit Runge–Kutta time integration with the solution of an implicit system of equations, which in earlier work demonstrated increased efficiency in computing compressible flow on highly stretched meshes, is extended toward conditions where the free stream Mach number approaches zero. Expressing the inviscid flux Jacobians in terms of Mach number, an artificial speed of sound as in low Mach number preconditioning is introduced into the Jacobians, leading to a consistent formulation of the implicit and explicit parts of the discrete equations. Besides extension to low Mach number flows, the augmented Runge–Kutta/Implicit method allowed the admissible Courant–Friedrichs–Lewy number to be increased from O(1 0 0) to O(1 0 0 0). The implicit step introduced into the Runge–Kutta framework acts as a preconditioner which now addresses both, the stiffness in the discrete equations associated with highly stretched meshes, and the stiffness in the analytical equations associated with the disparity in the eigenvalues of the inviscid flux Jacobians. Integrated into a multigrid algorithm, the method is applied to efficiently compute different cases of inviscid flow around airfoils at various Mach numbers, and viscous turbulent airfoil flow with varying Mach and Reynolds number. Compared to well tuned conventional methods, computation times are reduced by half an order of magnitude.  相似文献   

13.
Basic function method is developed to treat the incompressible viscous flow. Artificial compressibility coefficient, the technique of flux splitting method and the combination of central and upwind schemes are applied to construct the basic function scheme of trigonometric function type for solving three-dimensional incompressible Navier-Stokes equations numerically. To prove the method, flows in finite-length-pipe are calculated, the velocity and pressure distribution of which solved by our method quite coincide with the exact solutions of Poiseuille flow except in the areas of entrance and exit. After the method is proved elementary, the hemodynamics in two- and three-dimensional aneurysms is researched numerically by using the basic function method of trigonometric function type and unstructured grids generation technique. The distributions of velocity, pressure and shear force in steady flow of aneurysms are calculated, and the influence of the shape of the aneurysms on the hemodynamics is studied. Supported by the National Natural Foundation of China (Grant Nos. 40874077, 40504020, and 40536029) and the National Basic Research Program of China (Grant No. 2006CB806304)  相似文献   

14.
In this paper,the problem of axially symmetric deformation is examined for a composite cylindrical tube under equal axial loads acting on its two ends,where the tube is composed of two different incompressible neo-Hookean materials.Significantly,the implicit analytical solutions describing the deformation of the tube are proposed.Numerical simulations are given to further illustrate the qualitative properties of the solutions and some meaningful conclusions are obtained.In the tension case,with the increasing axial loads or with the decreasing ratio of shear moduli of the outer and the inner materials,it is proved that the tube will shrink more along the radial direction and will extend more along the axial direction.Under either tension or compression,the deformation along the axial direction is obvious near the two ends of the tube,while in the rest,the change is relatively small.Similarly,for a large domain of the middle part,the axial elongation is almost constant;however,the variation is very fast near the two ends.In addition,the absolute value of the axial displacement increases gradually from the central cross-section of the tube and achieves the maximum at the two endpoints.  相似文献   

15.
16.
The grand potential for open systems describes thermodynamics of fluid flows at low Mach numbers. A new system of reduced equations for the grand potential and the fluid momentum is derived from the compressible Navier-Stokes equations. The incompressible Navier-Stokes equations are the quasistationary solution to the new system. It is argued that the grand canonical ensemble is the unifying concept for the derivation of models and numerical methods for incompressible fluids, illustrated here with a simulation of a minimal Boltzmann model in a microflow setup.  相似文献   

17.
We consider a superconducting material that exists in the liquid state, more precisely, in which the Meissner-Ochsenfeld effect persists in the liquid state. First, we investigate how the shape of such a hypothetical Meissner liquid will adapt to accomodate for an applied external field. In particular, we analyse the case of a droplet of Meissner fluid, and compute the elongation of the droplet and its quadrupole frequency as a function of the applied field. Next, the influence of an applied field on the flow of the liquid is studied for the case of a surface wave. We derive the dispersion relation for surface waves on an incompressible Meissner fluid. We discuss some candidate realizations of the Meissner fluids and for the case of a superconducting colloid discuss which regime of wave lengths would be most affected by the Meissner effect.  相似文献   

18.
Phase-space Lagrangian dynamics in ideal fluids (i.e., continua) is usually related to the so-called ideal tracer particles. The latter, which can in principle be permitted to have arbitrary initial velocities, are understood as particles of infinitesimal size which do not produce significant perturbations of the fluid and do not interact among themselves. An unsolved theoretical problem is the correct definition of their dynamics in ideal fluids. The issue is relevant in order to exhibit the connection between fluid dynamics and the classical dynamical system, underlying a prescribed fluid system, which uniquely generates its time-evolution.The goal of this paper is to show that the tracer-particle dynamics can be exactly established for an arbitrary incompressible fluid uniquely based on the construction of an inverse kinetic theory (IKT) [M. Tessarotto, M. Ellero, Bull. Am. Phys. Soc. 45 (9) (2000) 40; M. Tessarotto, M. Ellero, AIP Conf. Proc. 762 (2005) 108. RGD24, Italy, July 10-16, 2004; M. Ellero, M. Tessarotto, Physica A 355 (2005) 233; M. Tessarotto, M. Ellero, Physica A 373 (2007) 142, arXiv: physics/0602140; M. Tessarotto, M. Ellero, in: M.S. Ivanov, A.K. Rebrov (Eds.), Proc. 25th RGD, International Symposium on Rarefied gas Dynamics, St. Petersburg, Russia, July 21-28, 2006, Novosibirsk Publ. House of the Siberian Branch of the Russian Academy of Sciences, 2007, p. 1001, arXiv:physics/0611113; M. Tessarotto, C. Cremaschini, Strong solutions of the incompressible Navier-Stokes equations in external domains: Local existence and uniqueness, arXiv:0809.5164v1 [math-ph], 2008]. As an example, the case of an incompressible Newtonian thermofluid is considered here.  相似文献   

19.
20.
《Physics letters. A》1988,130(2):81-86
Equations that govern the time evolution of incompressible elastic fluids are shown to possess the hamiltonian structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号