首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a fuzzy logic based guaranteed cost controller for trajectory tracking in nonlinear systems. Takagi–Sugeno (T–S) fuzzy model is used to represent the dynamics of a nonlinear system and the controller design is carried out using this fuzzy model. State feedback law is used for building the fuzzy controller whose performance is evaluated using a quadratic cost function. For designing the fuzzy logic based controller which satisfies guaranteed performance, linear matrix inequality (LMI) approach is used. Sufficient conditions are derived in terms of matrix inequalities for minimizing the performance function of the controller. The performance function minimization problem with polynomial matrix inequalities is then transformed into a problem of minimizing a convex performance function involving standard LMIs. This minimization problem can be solved easily and efficiently using the LMI optimization techniques. Our controller design method also ensures that the closed-loop system is asymptotically stable. Simulation study is carried out on a two-link robotic manipulator tracking a reference trajectory. From the results of the simulation study, it is observed that our proposed controller tracks the reference trajectory closely while maintaining a guaranteed minimum cost.  相似文献   

2.
In this paper, the switched safe tracking control scheme is investigated for the attitude and altitude system of a medium-scale unmanned autonomous helicopter with output constraints and unknown external disturbances. To keep the attitude angles and altitude within the desired constrained range, an output boundary protection approach is adopted to generate an output constrained trajectory which is piecewise differentiable. The disturbance observer-based control method is employed to handle the unknown external disturbances of the system. Because of the piecewise differentiability of the output constrained trajectory, the closed-loop error system with the safe tracking controller can be seen as a switched system with jump dynamics. The multiple Lyapunov function method is adopted to guarantee the tracking performance with designed average dwell time. Simulation results of an example are provided to illustrate the effectiveness of the proposed control scheme for the unmanned autonomous helicopter system.  相似文献   

3.
To solve disturbances, nonlinearity, nonholonomic constraints and dynamic coupling between the platform and its mounted robot manipulator, an adaptive sliding mode controller based on the backstepping method applied to the robust trajectory tracking of the wheeled mobile manipulator is described in this article. The control algorithm rests on adopting the backstepping method to improve the global ultimate asymptotic stability and applying the sliding mode control to obtain high response and invariability to uncertainties. According to the Lyapunov stability criterion, the wheeled mobile manipulator is divided into several stabilizing subsystems, and an adaptive law is designed to estimate the general nondeterminacy, which make the controller be capable to drive the trajectory tracking error of the mobile manipulator to converge to zero even in the presence of perturbations and mathematical model errors. We compare our controller with the robust neural network based algorithm in nonholonomic constraints and uncertainties, and simulation results prove the effectivity and feasibility of the proposed method in the trajectory tracking of the wheeled mobile manipulator.  相似文献   

4.
A feedback controller for approximate tracking a prescribed trajectory of an inaccurately observed dynamical system effected by uncertain non-observable input disturbances over an infinite time interval is constructed. The controller is “resource-saving” in a sense that control resources spent for approximate tracking do not exceed (with some small gaps) those needed for exact tracking in an “ideal” situation where the current values of the input disturbance are fully observable.  相似文献   

5.
In this paper, neural network-based nonlinear dynamical control of kinematically redundant robot manipulators is considered. The neural network-based controller achieves end-effector trajectory tracking as well as subtask tracking effectively. A feedforward neural network is employed to learn the parametric uncertainties, existing in the dynamical model of the robot manipulator. The whole system is shown to be stable in the sense of Lyapunov. Numerical simulation studies are carried out for a 3R planar robot manipulator to show the effectiveness of the control scheme.  相似文献   

6.
This paper investigates the problem of trajectory tracking control for quadrotor unmanned aerial vehicle (UAV) in the presence of dynamic obstacles and external disturbance forces/torques. More specifically, two new sliding mode disturbance observers are firstly designed to estimate the external disturbances, in which the observation errors can converge to zero in finite time. Furthermore, utilizing the observation information, a new sliding mode surface-like variable-based position tracking control scheme and a novel nonsingular terminal sliding mode-based attitude synchronization control scheme are developed to drive the UAV tracking the reference trajectory with obstacle avoiding. Moreover, the tracking errors of the close-loop control system can converge to zero within finite time by the analyses of Lyapunov methodology. Finally, the numerical simulation results are presented to illustrate the effectiveness of the proposed control schemes.  相似文献   

7.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

8.
This paper investigates the trajectory tracking control of the networked multimanipulator with the existence of time‐varying delays and uncertainties in both kinematics and dynamics. To address time‐varying delays in the communication links, a novel control scheme is established by the design of delay–rate‐dependent networking mutual coupling strengths. Besides, to handle the kinematic and dynamic uncertainties, an adaptive controller is designed. The proposed control scheme guarantees that the networked robotic system can track a commonly desired trajectory cooperatively with the strongly connected communication graph, uncertainties, and time‐varying communicating delays. A Lyapunov–Krasovskii functional is employed to rigorously prove the asymptotic convergence of both tracking errors and synchronization errors. The simulation results are provided to verify the effectiveness of the control method proposed by this paper.  相似文献   

9.
A trajectory-tracking approach for a parallel kinematic manipulator with flexible links is investigated with respect to its robustness to undesired initial oscillations. For this purpose, an inverse fuzzy arithmetical scheme is presented and applied, in order to estimate allowable bounds on the initial conditions such that a certain tolerance band around the desired trajectory is not violated. The uncertainty bounds on the initial conditions obtained from this identification procedure indicate the influence of the disturbances on the tracking error, and thus also the robustness and the performance of the control scheme. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
卫星姿态跟踪的间接自适应模糊预测控制   总被引:1,自引:0,他引:1  
孙光  霍伟 《系统科学与数学》2009,29(10):1327-1342
对含模型不确定性和未知干扰的卫星姿态系统提出了具有间接自适应模糊补偿的广义预测跟踪控制方法. 首先基于卫星姿态动力学模型设计了非线性广义预测控制律, 再利用自适应模糊系统逼近预测控制律中的模型不确定项, 使得所得到的预测控制算法可实施.证明了当卫星姿态模型中不确定项满足一定条件时, 所设计的控制律可使卫星姿态跟踪误差收敛到原点的小邻域内,并仿真结果验证了所提出方法的有效性.  相似文献   

11.
A promising area of research in fuzzy control is the model-based fuzzy controller. At the heart of this approach is a fuzzy relational model of the process to be controlled. Since this model is identified directly from process input-output data it is likely that ‘holes’ will be present in the identified relational model. These holes are real problems when the model is incorporated into a model-based controller since the model will be unable to make any predictions whatsoever if the system drifts into an unknown region. The present work deals with the completeness of the fuzzy relational model which forms the core of the controller. This work proposes a scheme of post-processing to ‘fiil in’ the fuzzy relational model once it has been built and thereby improve its applicability for on-line control. A comparative study of the post-processed model and conventional relational model is presented for Box-Jenkins data identification system and a real-time, highly non-linear application of pH control identification.  相似文献   

12.
An adaptive tuning algorithm of the fuzzy controller is developed for a class of serial-link robot arms. The algorithm can on-line tune parameters of premise and consequence parts of fuzzy rules of the fuzzy basis function (FBF) controller. The main part of the fuzzy controller is a fuzzy basis function network to approximate unknown rigid serial-link robot dynamics. Under some mild assumptions, a stability analysis guarantees that both tracking errors and parameter estimate errors are bounded. Moreover, a robust technique is adopted to deal with uncertainties including approximation errors and external disturbances. Simulations of the proposed controller on the PUMA-560 robot arm demonstrate the effectiveness.  相似文献   

13.
对具有未建模动态并且输入通道存在干扰的动态不确定多输入多输出(MIMO)模型参考自适应控制(MRAC)系统,应用输出反馈给出了一种变结构模型跟踪控制器设计.系统的已建模部分有大于1的任意相对阶且已建模部分阶的上界是未知的.通过引入辅助信号和带有记忆功能的正规化信号,以及适当选择控制器参数,保证了闭环系统的全局稳定性,且跟踪误差可调整到任意小.  相似文献   

14.
In this paper, a two-degrees-of-freedom Internal Model Control structure is incorporated in production inventory control for a supply chain system. This scheme presents an intuitive and simple parametrization of controllers, where inventory target tracking and disturbance (demand) rejection in the inventory level problems are treated separately. Moreover, considering that the lead times are known, this scheme presents a perfect compensation of the delay making the stabilization problem easier to handle. This control structure is formulated for a serial supply chain in two ways (by using a centralized and a decentralized control approach). The behavior of these inventory control strategies is analyzed in the entire supply chain. Analytical tuning rules for bullwhip effect avoidance are developed for both strategies. The results of controller evaluations demonstrate that centralized control approach enhances the behavior with respect to the inventory target tracking, demand rejection and bullwhip effect in the supply chain systems.  相似文献   

15.
Most metal parts made by machining operations contain burrs, which can be removed by robotic manipulators. Modeling a deburring robot on unknown contours is a relatively difficult task. In this study, we present a novel compliant motion controller that uses a modified on-line rule self-regulating fuzzy control (RSFC) and depends on no mathematical models. In the proposed controller, a Cartesian robot on which a grinding tool is mounted rigidly performs edge following (precision deburring) and chamfering on unknown contours. The manipulator is controlled along the tangential direction of a constrained surface and its cutting force is maintained at a desired level. Experimental results demonstrate the effectiveness of this control strategy in terms of automatically deburring the edges of parts with an unknown geometrical configuration.  相似文献   

16.
A novel observer-base output feedback variable universe adaptive fuzzy controller is investigated in this paper. The contraction and expansion factor of variable universe fuzzy controller is on-line tuned and the accuracy of the system is improved. With the state-observer, a novel type of adaptive output feedback control is realized. A supervisory controller is used to force the states to be within the constraint sets. In order to attenuate the effect of both external disturbance and variable parameters on the tracking error and guarantee the states to be within the constraint sets, a robust controller is appended to the variable universe fuzzy controller. Thus, the robustness of system is improved. By Lyapunov method, the observer-controller system is shown to be stable. The overall adaptive control algorithm can guarantee the global stability of the resulting closed-loop system in the sense that all signals involved are uniformly bounded. In the paper, we apply the proposed control algorithms to control the Duffing chaotic system and Chua’s chaotic circuit. Simulation results confirm that the control algorithm is feasible for practical application.  相似文献   

17.
Nan Wang  Jinyong Yu  Weiyang Lin 《Complexity》2016,21(Z2):191-200
This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding‐mode‐based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti‐windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity 21: 191–200, 2016  相似文献   

18.
自适应模糊变结构控制的研究   总被引:1,自引:0,他引:1  
本文主要研究一类具有未知常数控制增益的非线性系统的自适应模糊控制问题,提出了一种能够利用专家的语言信息和数字信息的自适应模糊变结构控制器的设计方案。通过理论分析,证明了模糊变结构控制系统是全局稳定的,跟踪误差可收敛到零的一个邻域内  相似文献   

19.
This article proposes a novel adaptive sliding mode control (SMC) scheme to realize the problem of robust tracking and model following for a class of uncertain time‐delay systems with input nonlinearity. It is shown that the proposed robust tracking controller guarantees the stability of overall closed‐loop system and achieves zero‐tracking error in the presence of input nonlinearity, time‐delays, time‐varying parameter uncertainties and external disturbances. The selection of sliding surface and the existence of sliding mode are two important issues, which have been addressed. This scheme assures robustness against input nonlinearity, time‐delays, parameter uncertainties, and external disturbances. Moreover, the knowledge of the upper bound of uncertainties is not required and chattering phenomenon is eliminated. Both theoretical analysis and illustrative examples demonstrate the validity of the proposed scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 66–73, 2015  相似文献   

20.
Moving-horizon control is a type of sampled-data feedback control in which the control over each sampling interval is determined by the solution of an open-loop optimal control problem. We develop a dual-sampling-rate moving-horizon control scheme for a class of linear, continuous-time plants with strict input saturation constraints in the presence of plant uncertainty and input disturbances. Our control scheme has two components: a slow-sampling moving-horizon controller for a nominal plant and a fast-sampling state-feedback controller whose function is to force the actual plant to emulate the nominal plant. The design of the moving-horizon controller takes into account the nonnegligible computation time required to compute the optimal control trajectory.We prove the local stability of the resulting feedback system and illustrate its performance with simulations. In these simulations, our dual-sampling-rate controller exhibits performance that is considerably superior to its single-sampling-rate moving-horizon controller counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号