首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper presents an analytical layer-element solution to non-axisymmetric consolidation of multilayered poroelastic materials with anisotropic permeability and compressible constituents. By applying Fourier expansions, Hankel transforms and Laplace transforms to the state variables involved in the governing equations of poroelasticity with respect to the circumferential, radial and time coordinates, respectively, the analytical layer-element (i.e. a symmetric stiffness matrix) is derived, which describes the relationship between the transformed generalized stresses and displacements at the surface (z = 0) and those at an arbitrary depth z, considering the corresponding boundary and continuity conditions at the layer interfaces, the global stiffness matrix of a multilayered system is assembled in the transformed domain. The actual solutions in the physical domain are acquired by applying numerical quadrature schemes for the inversion of the Laplace–Hankel transform. Finally, numerical calculation is presented to investigate the influence of layering and poroelastic material parameters on consolidation process.  相似文献   

2.
Research interest in the mechanical behaviour of soils is growing as a result of an increasing number of geomechanical problems involving consolidation effects. The main aim of this paper is to validate and to solve a model for consolidation of an elastic saturated soil with incompressible fluid and variable permeability. Firstly, we prove the existence and uniqueness of the solution of the variational problem corresponding to an initial and boundary value problem (IBVP): a special case of the Biot’s ‘consolidation of clay’ model (where the applied forces depend on time). Secondly, we prove the convergence of the method using a technique based on the proof of solution’s existence. Finally, we then solved this constitutive model by the finite element method (FEM) employing repeated fixed point techniques in order to obtain the results for displacement and pore water pressure. The pore fluid is considered incompressible. The results of the numerical experiments are compared with analytical solutions and, in cases where such solutions do not exist, with experimental data. Therefore, the model can be used for quantitative predictions of consolidation behaviour of soils with permeability dependent on the settlement.  相似文献   

3.
This paper first studies the tracking and almost disturbance decoupling problem of nonlinear AMIRA’s ball and beam system based on the feedback linearization approach and fuzzy logic control. The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system is valid for any initial condition and bounded tracking signal with the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling, i.e., the influence of disturbances on the L2 norm of the output tracking error can be arbitrarily attenuated by changing some adjustable parameters. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by our proposed approach. The simulation results show that our proposed approach has achieved the almost disturbance decoupling performance perfectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号