首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This paper is motivated from some recent papers treating the problem of the existence of a solution for impulsive differential equations with fractional derivative. We firstly show that the formula of solutions in cited papers are incorrect. Secondly, we reconsider a class of impulsive fractional differential equations and introduce a correct formula of solutions for a impulsive Cauchy problem with Caputo fractional derivative. Further, some sufficient conditions for existence of the solutions are established by applying fixed point methods. Some examples are given to illustrate the results.  相似文献   

2.
By fixed point theory the nonlinear alternative of Leray–Schauder type, and the properties of absolutely continuous functions space, we study the existence and uniqueness of initial value problems for nonlinear higher fractional equations with delay, and obtain some new results involving local and global solutions.  相似文献   

3.
In this paper, we prove the existence and non-existence of solutions to two impulsive fractional differential equations with strong or weak Caputo derivatives in Euclidean space, respectively.  相似文献   

4.
We study the existence and the uniqueness of mild and classical solutions for a class of equations of the form . Such equations arise in distributed derivatives models of viscoelasticity and system identification theory. We also formulate a variational principle for a more general equation based on a method of doubling of variables for such equations.  相似文献   

5.
In this paper, by using the Schauder fixed point theorem, we study the existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations and obtain some new results.  相似文献   

6.
In this paper, based on the homotopy analysis method (HAM), a powerful algorithm is developed for the solution of nonlinear ordinary differential equations of fractional order. The proposed algorithm presents the procedure of constructing the set of base functions and gives the high-order deformation equation in a simple form. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter ??. The analysis is accompanied by numerical examples. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.  相似文献   

7.
8.
In some recent works dealing with the existence of solutions for impulsive fractional differential equations, it is pointed out that the concept of solutions for such equations in some preceding papers is incorrect. In support of this claim, the authors of these papers begin with a counterexample. The objective of this note to indicate the mistake in these counterexamples and show the plausibility of the previous results.  相似文献   

9.
By means of a monotone iterative technique, we establish the existence and uniqueness of the positive solutions for a class of higher conjugate-type fractional differential equation with one nonlocal term. In addition, the iterative sequences of solution and error estimation are also given. In particular, this model comes from economics, financial mathematics and other applied sciences, since the initial value of the iterative sequence can begin from an known function, this is simpler and helpful for computation.  相似文献   

10.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

11.
In this paper, we derived the shifted Jacobi operational matrix (JOM) of fractional derivatives which is applied together with spectral tau method for numerical solution of general linear multi-term fractional differential equations (FDEs). A new approach implementing shifted Jacobi operational matrix in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of nonlinear multi-term FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The proposed methods are applied for solving linear and nonlinear multi-term FDEs subject to initial or boundary conditions, and the exact solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the new algorithm with those found by other known methods.  相似文献   

12.
In this paper, a new numerical method for solving fractional differential equations is presented. The fractional derivative is described in the Caputo sense. The method is based upon Bernoulli wavelet approximations. The Bernoulli wavelet is first presented. An operational matrix of fractional order integration is derived and is utilized to reduce the initial and boundary value problems to system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

13.
14.
In this paper, shifted Legendre polynomials will be used for constructing the numerical solution for a class of multiterm variable‐order fractional differential equations. In the proposed method, the shifted Legendre operational matrix of the fractional variable‐order derivatives will be investigated. The fundamental problem is reduced to an algebraic system of equations using the constructed matrix and the collocation technique, which can be solved numerically. The error estimate of the proposed method is investigated. Some numerical examples are presented to prove the applicability, generality, and accuracy of the suggested method.  相似文献   

15.
In this paper, we introduced an accurate computational matrix method for solving systems of high order fractional differential equations. The proposed method is based on the derived relation between the Chebyshev coefficient matrix A of the truncated Chebyshev solution u(t)u(t) and the Chebyshev coefficient matrix A(ν)A(ν) of the fractional derivative u(ν)u(ν). The fractional derivatives are presented in terms of Caputo sense. The matrix method for the approximate solution for the systems of high order fractional differential equations (FDEs) in terms of Chebyshev collocation points is presented. The systems of FDEs and their conditions (initial or boundary) are transformed to matrix equations, which corresponds to system of algebraic equations with unknown Chebyshev coefficients. The remaining set of algebraic equations is solved numerically to yield the Chebyshev coefficients. Several numerical examples for real problems are provided to confirm the accuracy and effectiveness of the present method.  相似文献   

16.
In this paper, a new two‐dimensional fractional polynomials based on the orthonormal Bernstein polynomials has been introduced to provide an approximate solution of nonlinear fractional partial Volterra integro‐differential equations. For this aim, the fractional‐order orthogonal Bernstein polynomials (FOBPs) are constructed, and its operational matrices of integration, fractional‐order integration, and derivative in the Caputo sense and product operational matrix are derived. These operational matrices are utilized to reduce the under study problem to a nonlinear system of algebraic equations. Using the approximation of FOBPs, the convergence analysis and error estimate associated to the proposed problem have been investigated. Finally, several examples are included to clarify the validity, efficiency, and applicability of the proposed technique via FOBPs approximation.  相似文献   

17.
In this paper, the approximate controllability for a class of Hilfer fractional differential equations (FDEs) of order 1<α<2 and type 0 ≤ β ≤ 1 is considered. The existence and uniqueness of mild solutions for these equations are established by applying the Banach contraction principle. Further, we obtain a set of sufficient conditions for the approximate controllability of these equations. Finally, an example is presented to illustrate the obtained results.  相似文献   

18.
This paper discusses nonlinear boundary value problem for first order impulsive functional differential equations. We establish several existence results by using the lower and upper solutions and monotone iterative techniques. Two examples are discussed to illustrate the efficiency of the obtained results.  相似文献   

19.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

20.
The objectives of this paper are twofold. Firstly, to prove the existence of an approximate solution in the mean for some nonlinear differential equations, we also investigate the behavior of the class of solutions which may be associated with the differential equation. Secondly, we aim to implement the homotopy perturbation method (HPM) to find analytic solutions for strongly nonlinear differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号