首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
A discontinuous Galerkin method by patch reconstruction is proposed for Stokes flows. A locally divergence-free reconstruction space is employed as the approximation space, and the interior penalty method is adopted which imposes the normal component penalty terms to cancel out the pressure term. Consequently, the Stokes equation can be solved as an elliptic system instead of a saddle-point problem due to such weak form. The number of degree of freedoms of our method is the same as the number of elements in the mesh for different order of accuracy. The error estimations of the proposed method are given in a classical style, which are then verified by some numerical examples.  相似文献   

2.
Polynomial and rational wave solutions of Kudryashov-Sinelshchikov equation and numerical simulations for its dynamic motions are investigated. Conservation flows of the dynamic motion are obtained utilizing multiplier approach. Using the unified method, a collection of exact solitary and soliton solutions of Kudryashov-Sinelshchikov equation is presented. Collocation finite element method based on quintic B-spline functions is implemented to the equation to evidence the accuracy of the proposed method by test problems. Stability analysis of the numerical scheme is studied by employing von Neumann theory. The obtained analytical and numerical results are in good agreement.  相似文献   

3.
The derivation of macroscopic models for particle-laden gas flows is reviewed. Semi-implicit and Newton-like finite element methods are developed for the stationary two-fluid model governing compressible particle-laden gas flows. The Galerkin discretization of the inviscid fluxes is potentially oscillatory and unstable. To suppress numerical oscillations, the spatial discretization is performed by a high-resolution finite element scheme based on algebraic flux correction. A multidimensional limiter of TVD type is employed. An important goal is the efficient computation of stationary solutions in a wide range of Mach numbers. This is a challenging task due to oscillatory correction factors associated with TVD-type flux limiters and the additional strong nonlinearity caused by interfacial coupling terms. A semi-implicit scheme is derived by a time-lagged linearization of the nonlinear residual, and a Newton-like method is obtained in the limit of infinite CFL numbers. The original Jacobian is replaced by a low-order approximation. Special emphasis is laid on the numerical treatment of weakly imposed boundary conditions. It is shown that the proposed approach offers unconditional stability and faster convergence rates for increasing CFL numbers. The strongly coupled solver is compared to operator splitting techniques, which are shown to be less robust.  相似文献   

4.
The solution of Poisson’s equation is essential for many branches of science and engineering such as fluid-mechanics, geosciences, and electrostatics. Solution of two-dimensional Poisson’s equations is carried out by BEM based on Galerkin Vector Method in which the integrals that appear in the boundary element method are expressed by analytical integration. In this paper, the Galerkin vector method is developed for more general case than presented in the previous works. The integrals are computed for constant and linear elements in BEM. By employing analytical integration in BEM computation, the numerical schemes and coordinate transformations can be avoided. The presented method can also be used for the multiple domain case. The results of the analytical integration are employed in BEM code and the obtained analytical expression will be applied to several examples where the exact solution exists. The produced results are in good agreement with the exact solution.  相似文献   

5.
The problem considered here is the steady, incompressible plane Stokes flow in a rectangular cavity generated by uniform translation of the upper wall. An exact analytical solution of the governing biharmonic equation is derived which not only contains the leading term of the required singularities at the upper corners, but also approximately satisfies the boundary conditions at all four walls. A standard numerical algorithm is employed to correct the small deviations in the boundary conditions satisfied by the analytical solution. This technique enables accurate computation of the solution uniformly throughout the domain; in particular, near the singular corners and in those regions where the flow is extremely weak, for example, in the secondary vortex regions of the deep cavity. The method is illustrated for the square cavity and also for a deep cavity with a depth-to-width ratio of five, and the results are compared with previous analytical and numerical solutions.  相似文献   

6.
Based on Li’s immersed interface method (IIM), an ADI-type finite difference scheme is proposed for solving two-dimensional nonlinear convection–diffusion interface problems on a fixed cartesian grid, which is unconditionally stable and converges with two-order accuracy in both time and space in maximum norm. Correction terms are added to the right-hand side of standard ADI scheme at irregular points. The nonlinear convection terms are treated by Adams–Bashforth method, without affecting the stability of difference schemes. A new method for computing the correction terms is developed, in which the Adams–Bashforth method is employed. Thus we can get an explicit approximation for the computation of corrections, when the jump condition is solution-dependent. Three numerical experiments are displayed and analyzed. The numerical results show good agreement with the exact solutions and confirm the convergence order.  相似文献   

7.
仿样有限条法(spline finite strip method)是分析等截面结构最流行的数值方法之一.在以往的研究中,与一些基准问题的解析结果相比较,论证了该方法数值结果的有效性和收敛性,但至今未对该方法的精确解和显式误差项进行过数学推导,解析地论证过其收敛性.该文在对平板的分析中,使用酉变换(简称U变换)逼近法,导出了仿样有限条法精确的数学解,这是首次在公开文献中给出的精确解.和常规的仿样有限条法相比较,总矩阵方程的集成及其数值解都不同,U变换法的总矩阵方程,减少为仅含有2个未知量的方程,然后导出仿样有限条法显式的精确解.精确解按Taylor级数展开,导出误差项和收敛率,并和其他数值方法直接比较.在这一点上可以发现,仿样有限条法收敛速度和非协调有限元相同时,包含的未知量少得多,收敛率比常规的有限差分法快得多.  相似文献   

8.
给出细长圆锥形的截面杆受到质点纵向碰撞时的精确解析解.提出了一种新方法用于分析质点-圆锥形杆碰撞,使用了叠加法给出杆的响应.其结果可验证数值解和其他解析解.所提出方法的优点之一是响应解的解析形式简洁.结论是质量比和一些描述杆几何形状的变量,如倾斜度、杆长和半径在撞击分析中具有重要作用.  相似文献   

9.
This paper presents approximate analytical solutions for a system of singular Volterra integral equations of convolution type by using the fractional differential transform method. The solutions are calculated in the form of convergent series with easily computable terms and also the exact solutions can be achieved by well-known series solutions. Several examples are given to demonstrate reliability and performance of the presented method.  相似文献   

10.
He's energy balance method (HEBM) is employed in this article to obtain the analytical approximate solution of the generalized nonlinear oscillator. Existence of periodic solutions is analytically verified and consequently the relationship between the natural frequency and the initial amplitude is obtained in an analytical form. A number of numerical simulations are carried out and accuracy of the HEBM is then examined within an error analysis. The exact values of the natural frequency numerically obtained via the elliptic integrals are taken into account as the references bases and the relative error is then evaluated for a range of oscillation amplitudes. Excellent correlation of the approximate frequencies with the exact ones demonstrates that the approximate solutions are quite consistent even for large amplitudes of oscillation.  相似文献   

11.
Calculations are presented of flow characteristics in the vicinity of disks and cylinders rotating at speeds typical of those found in modern mechatronics machinery. The rotational speeds are slow or intermittent, and the generated boundary layers are laminar and transitional. Comparison is made with existing experimental data and exact, though idealised, analytical solutions. A three-dimensional finite volume procedure with time dependence was employed as the solution method, and two grid geometries were used, namely, axisymmetric and cartesian. Use of a cartesian grid is very important, as it is compatible with the design of the interiors of mechatronics machinery, and present practice is to model these interiors with computationally economical cartesian grids. Expanding grids were generated normal to surfaces for each of the grid geometries so as to capture the thin boundary layers. To alleviate numerical difficulties, when using the cartesian geometry, an expanding and contracting grid was generated normal to the axis of the disks and cylinders with the grid spacing based on a shifted Chebyshev polynomial.  相似文献   

12.
In the present analysis, we study the steady mixed convection boundary layer flow of an incompressible Maxwell fluid near the two-dimensional stagnation-point flow over a vertical stretching surface. It is assumed that the stretching velocity and the surface temperature vary linearly with the distance from the stagnation-point. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. Analytical and numerical solutions of the derived system of equations are developed. The homotopy analysis method (HAM) and finite difference scheme are employed in constructing the analytical and numerical solutions, respectively. Comparison between the analytical and numerical solutions is given and found to be in excellent agreement. Both cases of assisting and opposing flows are considered. The influence of the various interesting parameters on the flow and heat transfer is analyzed and discussed through graphs in detail. The values of the local Nusselt number for different physical parameters are also tabulated. Comparison of the present results with known numerical results of viscous fluid is shown and a good agreement is observed.  相似文献   

13.
A flux-limiter method for dam-break flows over erodible sediment beds   总被引:3,自引:0,他引:3  
Finite volume methods for dam-break flows over erodible sediment beds require a monotone numerical flux. In the present study we present a new flux-limiter scheme based on the Lax–Wendroff method coupled with a non-homogeneous Riemann solver and a flux limiter function. The non-homogeneous Riemann solver consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The proposed method satisfy the conservation property such that the discretization of the flux gradients and the source terms are well-balanced in the numerical solution of suspended sediment models. The flux-limiter method provides accurate results avoiding numerical oscillations and numerical dissipation in the approximated solutions. Several standard test examples are considered to verify the performance and the accuracy of the proposed method.  相似文献   

14.
Rational nonlinear systems are widely used to model the phenomena in mechanics, biology, physics and engineering. However, there are no exact analytical solutions for rational nonlinear system. Hence, the approximate analytical solutions are good choices as they can give the estimation of the states for system analysis, controller design and reduction. In this paper, an approximate analytical solution for rational nonlinear system is derived in terms of the solution of a polynomial system by Volterra series theory. The rational nonlinear system is transformed to a singular polynomial system with finite terms by adding some algebraic constraints related to the rational terms. The analytical solution of singular polynomial system is approximated by the summation of the solutions of Volterra singular subsystems. Their analytical solutions are derived by a novel regularization algorithm. The first fourth Volterra subsystems are enough to approximate the analytical solution to guarantee the accuracy. Results of numerical experiments are reported to show the effectiveness of the proposed method.  相似文献   

15.
The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective–diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.  相似文献   

16.
In this investigation we propose a computational approach for the solution of optimal control problems for vortex systems with compactly supported vorticity. The problem is formulated as a PDE-constrained optimization in which the solutions are found using a gradient-based descent method. Recognizing such Euler flows as free-boundary problems, the proposed approach relies on shape differentiation combined with adjoint analysis to determine cost functional gradients. In explicit tracking of interfaces (vortex boundaries) this method offers an alternative to grid-based techniques, such as the level-set methods, and represents a natural optimization formulation for vortex problems computed using the contour dynamics technique. We develop and validate this approach using the design of 2D equilibrium Euler flows with finite-area vortices as a model problem. It is also discussed how the proposed methodology can be applied to Euler flows featuring other vorticity distributions, such as vortex sheets, and to time-dependent phenomena.  相似文献   

17.
A new nonstandard Lagrangian method is constructed for the one-dimensional, transient convective transport equation with nonlinear reaction terms. An “exact” time-stepping scheme is developed with zero local truncation error with respect to time. The scheme is based on nonlocal treatment of nonlinear reactions, and when applied at each spatial grid point gives the new fully discrete numerical method. This approach leads to solutions free from the numerical instabilities that arise because of incorrect modeling of derivatives and nonlinear reaction terms. Algorithms are developed that preserve the properties of the numerical solution in the case of variable velocity fields by using nonuniform spatial grids. Effects of different interpolation techniques are examined and numerical results are presented to demonstrate the performance of the proposed new method. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 467–485, 1998  相似文献   

18.
利用变分迭代技术解时滞微分方程   总被引:2,自引:0,他引:2  
应用变分迭代法这种较新的迭代技术解具有初值条件的时滞微分方程.通过这种方法,获得了它的数值解和精确解.通过一些实例充分地说明了这种方法是有效地和便捷的,所得的值与精确解相比较,进一步表明了这种方法的可靠性和精确性.而且这种方法还能被应用到其它领域.  相似文献   

19.
变分迭代法被用于解时滞微分方程,通过这种方法我们得到了他们的准确解和数值解。一些例子说明了这种方法的有效性,结果显示这种方法对于解时滞微分方程是一种有力的直接的数学方法。  相似文献   

20.
The exact series solutions of plates with general boundary conditions have been derived by using various methods such as Fourier series expansion, improved Fourier series method, improved superposition method and finite integral transform method. Although the procedures of the methods are different, they are all Fourier-series based analytical methods. In present study, the foregoing analytical methods are reviewed first. Then, an exact series solution of vibration of orthotropic thin plate with rotationally restrained edges is obtained by applying the method of finite integral transform. Although the method of finite integral transform has been applied for vibration analysis of orthotropic plates, the existing formulation requires of solving a highly non-linear equation and the accuracy of the corresponding numerical results can be questionable. For that reason, an alternative formulation was proposed to resolve the issue. The accuracy and convergence of the proposed method were studied by comparing the results with other exact solutions as well as approximate solutions. Discussions were made for the application of the method of finite integral transform for vibration analysis of orthotropic thin plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号