首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study an evolution problem which describes the dynamic contact of an elastic-visco-plastic body with a foundation. We model the contact with normal damped response and a local friction law. A damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We derive variational formulation for the model which is in the form of a system involving the displacement field, the stress field and the damage field. We prove the existence and uniqueness result of the weak solution. The proof is based on arguments of evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities and fixed point.  相似文献   

2.
In this paper we examine an evolution problem which describes the dynamic bilateral contact of a viscoelastic body and a foundation. The contact is modeled by a friction multivalued subdifferential boundary condition which incorporates the Coulomb law of friction, the SJK model and the orthotropic friction law. The main result concerns the existence and uniqueness of weak solutions to the hyperbolic variational inequality when the friction coefficient is sufficiently small. The proof is based on a surjectivity result for multivalued operators and a fixed point argument. Research supported in part by the State Committee for Scientific Research of the Republic of Poland (KBN) under Grants no. 2 P03A 003 25 and 4 T07A 027 26.  相似文献   

3.
We consider a mathematical model which describes the bilateral quasistatic contact of a viscoelastic body with a rigid obstacle. The contact is modelled with a modified version of Coulomb's law of dry friction and, moreover, the coefficient of friction is assumed to depend either on the total slip or on the current slip. In the first case, the problem depends upon contact history. We present the classical formulations of the problems, the variational formulations and establish the existence and uniqueness of a weak solution to each of them, when the coefficient of friction is sufficiently small. The proofs are based on classical results for elliptic variational inequalities and fixed point arguments. We also study the dependence of the solutions on the perturbations of the friction coefficient and obtain a uniform convergence result. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with normal compliance and unilateral constraint, associated to a rate slip-dependent version of Coulomb’s law of dry friction. In order to approximate the contact conditions, we consider a regularized problem wherein the contact is modelled by a standard normal compliance condition without finite penetrations. For each problem, we derive a variational formulation and an existence result of the weak solution of the regularized problem is obtained. Next, we prove the convergence of the weak solution of the regularized problem to the weak solution of the initial nonregularized problem. Then, we introduce a fully discrete approximation of the variational problem based on a finite element method and on a second order time integration scheme. The solution of the resulting nonsmooth and nonconvex frictional contact problems is presented, based on approximation by a sequence of nonsmooth convex programming problems. Finally, some numerical simulations are provided in order to illustrate both the behaviour of the solution related to the frictional contact conditions and the convergence result.  相似文献   

5.
We consider a mathematical model which describes the stationary flow of a Bingham fluid with friction. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive a weak formulation of the model which consists in a variational inequality for the velocity field. We establish the existence and uniqueness of the weak solution as well as its continuous dependence with respect to the contact condition. Finally, we describe a number of concrete friction conditions which may be set in this general framework and for which our results apply.  相似文献   

6.
O. Chau  W. Han  M. Sofonea 《Acta Appl Math》2002,71(2):159-178
We consider a mathematical model which describes the frictional contact between a viscoelastic body and a reactive foundation. The process is assumed to be dynamic and the contact is modeled with a general normal damped response condition and a local friction law. We present a variational formulation of the problem and prove the existence and uniqueness of the weak solution, using results on evolution equations with monotone operators and a fixed point argument. We then introduce and study a fully discrete numerical approximation scheme of the variational problem, in terms of the velocity variable. The numerical scheme has a unique solution. We derive error estimates under additional regularity assumptions on the data and the solution.  相似文献   

7.
We study a new class of elliptic variational-hemivariational inequalities arising in the modelling of contact problems for elastic ideally locking materials. The contact is described by the Signorini unilateral contact condition and the friction is modelled by the nonmonotone multivalued subdifferential condition which depends on the slip. The problem is governed by a nonlinear elasticity operator,the subdifferential of the indicator function of a convex set which describes the locking constraints and a nonconvex locally Lipschitz friction potential. The result on existence and uniqueness of solution to the inequality is shown. The proof is based on a surjectivity result for maximal monotone and pseudomonotone operators combined with the application of the Banach contraction principle.  相似文献   

8.
We analyze a problem which describes the frictional contact between a thermoviscoelastic body and a rigid foundation. The process is assumed to be quasistatic and the contact is modeled by a general normal damped response condition with friction law and heat exchange. Then we present a variational formulation of the problem, which is set in an abstract form as a system of evolution equations for the displacements and temperature. We establish the existence and uniqueness of the weak solution, using general results on evolution equations with monotone operators and fixed point arguments. Finally, we study the continuous dependence of the solution with respect to the initial data and contact conditions.  相似文献   

9.
10.
We study a mathematical model which describes the antiplane shear deformations of a cylinder in frictional contact with a rigid foundation. The process is static, the material behavior is described with a linearly elastic constitutive law and friction is modeled with a general slip dependent subdifferential boundary condition. We derive a variational formulation of the model which is in a form of a hemivariational inequality for the displacement field. Then we prove the existence of a weak solution to the model and, under additional assumptions, its uniqueness. The proofs are based on abstract results for operator inclusions in Banach spaces. Finally, we present concrete examples of friction laws for which our results are valid.  相似文献   

11.
We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution variational inequalities and fixed-point arguments. We also prove that the solution of the viscoelastic problem converges to the solution of the corresponding elastic problem, as the viscosity tensor converges to zero. Finally, we describe a number of concrete contact and friction conditions to which our results apply.  相似文献   

12.
We consider a mathematical model which describes the antiplane shear deformations of a piezoelectric cylinder in frictional contact with a foundation. The process is mechanically dynamic and electrically static, the material behavior is described with a linearly electro-viscoelastic constitutive law, the contact is frictional and the foundation is assumed to be electrically conductive. Both the friction and the electrical conductivity condition on the contact surface are described with subdifferential boundary conditions. We derive a variational formulation of the problem which is of the form of a system coupling a second order hemivariational inequality for the displacement field with a time-dependent hemivariational inequality for the electric potential field. Then we prove the existence of a unique weak solution to the model. The proof is based on abstract results for second order evolutionary inclusions in Banach spaces. Finally, we present concrete examples of friction laws and electrical conductivity conditions for which our result is valid.  相似文献   

13.
We examine a mathematical model which describes dynamic viscoelastic contact problems with nonmonotone normal compliance condition and the slip displacement dependent friction. First, we derive a weak formulation of the model in the form of a hemivariational inequality. Then we embed the hemivariational inequality into a class of second-order evolution inclusions for which we provide a result on the existence of a solution. We conclude with examples of the subdifferential boundary conditions for contact with normal compliance and the slip dependent friction.  相似文献   

14.
In this article we examine an evolution problem, which describes the dynamic contact of a viscoelastic body and a foundation. The contact is modeled by a general normal damped response condition and a friction law, which are nonmonotone, possibly multivalued and have the subdifferential form. First we derive a formulation of the model in the form of a multidimensional hemivariational inequality. Then we establish a priori estimates and we prove the existence of weak solutions by using a surjectivity result for pseudomonotone operators. Finally, we deliver conditions under which the solution of the hemivariational inequality is unique.  相似文献   

15.
In this paper, a class of generalized evolution variational inequalities arising in quasistatic friction contact problem for viscoelastic materials is introduced and studied. Under some suitable assumptions, we obtain an existence and uniqueness theorem of the solution for the generalized evolution variational inequalities by using Banach’s fixed point theorem. Moreover, we study two numerical approximation schemes of the problem: semidiscrete scheme and fully discrete scheme. For both schemes, we prove the existence of the solution and derive the error estimations.  相似文献   

16.
This paper is devoted to the study of a general dynamic variational–hemivariational inequality with history-dependent operators. These operators appear in a convex potential and in a locally Lipschitz superpotential. The existence and uniqueness of a solution to the inequality problem is explored through a result on a class of nonlinear evolutionary abstract inclusions involving a nonmonotone multivalued term described by the Clarke generalized gradient. The result presented in this paper is new and general. It can be applied to study various dynamic contact problems. As an illustrative example, we apply the theory on a dynamic frictional viscoelastic contact problem in which the contact is modeled by a nonmonotone Clarke subdifferential boundary condition and the friction is described by a version of the Coulomb law of dry friction with the friction bound depending on the total slip.  相似文献   

17.
We consider a mathematical model which describes the equilibrium of an elastic body in contact with two obstacles. We derive its weak formulation which is in a form of an elliptic quasi-variational inequality for the displacement field. Then, under a smallness assumption, we establish the existence of a unique weak solution to the problem. We also study the dependence of the solution with respect to the data and prove a convergence result. Finally, we consider an optimization problem associated with the contact model for which we prove the existence of a minimizer and a convergence result, as well.  相似文献   

18.
The main purpose of this paper is two-fold: (i) to generalize an existence result for a compressible gas-liquid model with a friction term recently published by Friis and Evje [SIAM J. Appl. Math., 71 (2011), pp. 2014–2047]; (ii) to derive a uniqueness result for the same model. A main ingredient in the existence part is the observation that we can consider weaker assumptions on the initial liquid and gas mass, and still obtain an existence result. Compared to the above mentioned work, we rely on a more refined application of the estimates provided by the basic energy estimate. Concerning the uniqueness result, we borrow ideas from Fang and Zhang [Nonlinear Anal. TMA, 58 (2004), pp. 719–731] and derive a stability result under appropriate constraints on parameters that determine rate of decay toward zero at the boundary for gas and liquid masses, and growth rate of masses associated with the friction term and viscous coefficient.  相似文献   

19.
In this paper we prove the existence and uniqueness of the weak solution for a dynamic thermoviscoelastic problem which describes frictional contact between a body and a foundation. We employ the nonlinear constitutive viscoelastic law with a long-term memory, which includes the thermal effects and considers the general nonmonotone and multivalued subdifferential boundary conditions for the contact, friction and heat flux. The model consists of the system of the hemivariational inequality of hyperbolic type for the displacement and the parabolic hemivariational inequality for the temperature. The existence of solutions is proved by using recent results from the theory of hemivariational inequalities and a fixed point argument.  相似文献   

20.
We study a mathematical model which describes the antiplane shear deformations of a cylinder in frictional contact with a rigid foundation. The process is dynamic, the material behavior is described with a linearly viscoelastic constitutive law and friction is modeled with a general subdifferential boundary condition. We derive a variational formulation of the model which is in a form of an evolutionary hemivariational inequality for the displacement field. Then we prove the existence of a weak solution to the model. The proof is based on an abstract result for second order evolutionary inclusions in Banach spaces. Also, we prove that, under additional assumptions, the weak solution to the model is unique. We complete our results with concrete examples of friction laws for which our results are valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号