共查询到20条相似文献,搜索用时 15 毫秒
1.
Mosheiov and Sidney (2003) showed that the makespan minimization problem with job-dependent learning effects can be formulated as an assignment problem and solved in O(n3) time. We show that this problem can be solved in O(nlog n) time by sequencing the jobs according to the shortest processing time (SPT) order if we utilize the observation that the job-dependent learning rates are correlated with the level of sophistication of the jobs and assume that these rates are bounded from below. The optimality of the SPT sequence is also preserved when the job-dependent learning rates are inversely correlated with the level of sophistication of the jobs and bounded from above. 相似文献
2.
In this paper, we bring into the scheduling field a general learning effect model where the actual processing time of a job is not only a general function of the total actual processing times of the jobs already processed, but also a general function of the job’s scheduled position. We show that the makespan minimization problem and the sum of the kth power of completion times minimization problem can be solved in polynomial time, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions. 相似文献
3.
In this paper, a generalized model with past-sequence-dependent learning and forgetting effects is proposed. Both effects are assumed to be dependent on the sum of processing time as well as the scheduling position. Based on this model, we investigate and prove that some single-machine problems remain polynomially solvable with certain agreeable conditions. We further show that many models known in the literature are special cases of our proposed model. Several helpful lemmas are presented to analyze single-machine scheduling problems with various objective functions: makespan, total completion time, weighted completion time, and maximum lateness. 相似文献
4.
The purpose of this study is to explore the single-machine scheduling with the effects of exponential learning and general deterioration. By the effects of exponential learning and general deterioration, we meant that job processing time is decided by the functions of their starting time and positions in the sequence. Results showed that with the introduction of learning effect and deteriorating jobs to job processing time, single-machine makespan, and sum of completion time (square) minimization problems remained polynomially solvable, respectively. But for the following objective functions: the weighted sum of completion time and the maximum lateness, this paper proved that the weighted smallest basic processing time first (WSPT) rule and the earliest due date first (EDD) rule constructed the optimal sequence under some special cases, respectively. 相似文献
5.
In many situations, the skills of workers continuously improve when repeating the same or similar tasks. This phenomenon is known as the “learning effect” in the literature. In most studies, the learning phenomenon is implemented by assuming the actual job processing time is a function of its scheduled position [D. Biskup, Single-machine scheduling with learning considerations, Eur. J. Oper. Res. 115 (1999) 173–178]. Recently, a new model is proposed where the actual job processing time depends on the sum of the processing times of jobs already processed [C. Koulamas, G.J. Kyparisis, Single-machine and two-machine flowshop scheduling with general learning functions, Eur. J. Oper. Res. 178 (2007) 402–407]. In this paper, we extend their models in which the actual job processing time not only depends on its scheduled position, but also depends on the sum of the processing times of jobs already processed. We then show that the single-machine makespan and the total completion time problems remain polynomially solvable under the proposed model. In addition, we show that the total weighted completion time has a polynomial optimal solution under certain agreeable solutions. 相似文献
6.
Scheduling with learning effects has been widely studied in the past decade. With the increasingly moving toward shorter product cycle times in many production lines, workers in this changeable environment must constantly learn new skill and technology. As a result, the forgetting effect might occur in these situations. In this paper, we propose a model with the consideration of both the learning and forgetting effects. We show some single-machine problems remain polynomially solvable under the proposed model. 相似文献
7.
In a recent paper, Lee and Wu [W.-C. Lee, C.-C. Wu, A note on single-machine group scheduling problems with position-based learning effect, Appl. Math. Model. 33 (2009) 2159–2163] proposed a new group scheduling learning model where the learning effect not only depends on the job position, but also depends on the group position. They investigate the makespan and the total completion time minimization problems on a single-machine. As for the total completion time minimization problem, they assumed that the numbers of jobs in each group are the same and the group normal setup and the job normal processing times are agreeable. Under the assumption conditions, they showed that the total completion time minimization problem can be optimally solved in polynomial time solution. However, the assumption conditions for the total completion time minimization problem do not reflect actual practice in many manufacturing processes. Hence, in this note, we propose other agreeable conditions and show that the total completion time minimization problem remains polynomially solvable under the agreeable conditions. 相似文献
8.
In many situations, the skills of workers continuously improve when repeating the same or similar tasks. This phenomenon is known as the “learning effect” in the literature. However, most studies considering the learning effect ignore the fact that production efficiency can be increased by grouping various parts and products with similar designs and/or production processes. This phenomenon is known as “group technology” in the literature. In this paper, we propose a new group scheduling learning model where the learning effect not only depends on the job position, but also depends on the group position. We then show that the makespan and the total completion time problems remain polynomially solvable under the proposed model. 相似文献
9.
This paper introduces a new time-dependent learning effect model into a single-machine scheduling problem. The time-dependent learning effect means that the processing time of a job is assumed to be a function of total normal processing time of jobs scheduled in front of it. In most related studies, the actual job processing time is assumed to be a function of its scheduled position when the learning effect is considered in the scheduling problem. In this paper, the actual processing time of a job is assumed to be proportionate to the length and position of the already scheduled jobs. It shows that the addressed problem remains polynomially solvable for the objectives, i.e., minimization of the total completion time and minimization of the total weighted completion time. It also shows that the shortest processing time (SPT) rule provides the optimum sequence for the addressed problem. 相似文献
10.
This paper studies the single-machine scheduling problem with deteriorating jobs and learning considerations. The objective is to minimize the makespan. We first show that the schedule produced by the largest growth rate rule is unbounded for our model, although it is an optimal solution for the scheduling problem with deteriorating jobs and no learning. We then consider three special cases of the problem, each corresponding to a specific practical scheduling scenario. Based on the derived optimal properties, we develop an optimal algorithm for each of these cases. Finally, we consider a relaxed model of the second special case, and present a heuristic and analyze its worst-case performance bound. 相似文献
11.
This paper considers some scheduling problems with deteriorating jobs. The objectives are to minimize the makespan, the total completion time, the total absolute deviation of completion time, the earliness, tardiness, and due date penalty, the sum of earliness penalties subject to no tardy jobs, respectively. We also explore two resource constrained scheduling problems: how to minimize the resource consumption with makespan constraints and how to minimize the makespan with the total resource consumption constraints. Several polynomial time algorithms are proposed to optimally solve the problems with the above objective functions. 相似文献
12.
Deteriorating jobs scheduling problems have been extensively studied in recent years. However, it is assumed that there is a common goal to minimize for all jobs in most of the research. In many management situations, multiple agents compete on the usage of a common processing resource. In this paper, we considered a single-machine scheduling problem with a linear deterioration assumption where the objective is to minimize the total weighted completion time of jobs from the first agent with the restriction that no tardy job is allowed for the second agent. We proposed a branch-and-bound algorithm and three heuristic algorithms to search for the optimal solution and near-optimal solutions, respectively. A computational experiment was conducted to evaluate the performance of the proposed algorithms. 相似文献
13.
This paper studies the single machine past-sequence-dependent (p-s-d) delivery times scheduling with general position-dependent and time-dependent learning effects. By the general position-dependent and time-dependent learning effects we mean that the actual processing time of a job is not only a function of the total normal processing times of the jobs already processed, but also a function of the job’s scheduled position. We consider the following objective functions: the makespan, the total completion time, the sum of the θth (θ?0) power of job completion times, the total lateness, the total weighted completion time, the maximum lateness, the maximum tardiness and the number of tardy jobs. We show that the problems of minimization of the makespan, the total completion time, the sum of the θth (θ?0) power of job completion times and the total lateness can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem, the discounted total weighted completion time minimization problem, the maximum lateness minimization problem, the maximum tardiness minimization problem and the total tardiness minimization problem can be solved in polynomial time under certain conditions. 相似文献
14.
In this paper we consider the scheduling problem with a general exponential learning effect and past-sequence-dependent (p-s-d) setup times. By the general exponential learning effect, we mean that the processing time of a job is defined by an exponent function of the total weighted normal processing time of the already processed jobs and its position in a sequence, where the weight is a position-dependent weight. The setup times are proportional to the length of the already processed jobs. We consider the following objective functions: the makespan, the total completion time, the sum of the δ ? 0th power of completion times, the total weighted completion time and the maximum lateness. We show that the makespan minimization problem, the total completion time minimization problem and the sum of the quadratic job completion times minimization problem can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions. 相似文献
15.
In this paper we consider single-machine group scheduling problems with effects of learning and deterioration at the same time. By effects of learning and deterioration, we mean that the group setup times are general linear functions of their starting times and the jobs in the same group have general position-dependent and time-dependent learning effects. The objective of scheduling problems is to minimize the makespan and the sum of completion times, respectively. We show that the problems remain solvable in polynomial time under the proposed model. 相似文献
16.
Suh-Jenq Yang 《Applied mathematics and computation》2010,217(7):3321-3329
In this paper we introduce a new model of joint start-time dependent learning and position dependent aging effects into single-machine scheduling problems. The machine may need maintenance to improve its production efficiency. The objectives are to find jointly the optimal maintenance position and the optimal sequence such that the makespan, the total completion time, and the total absolute deviation of completion times (TADC) are minimized. We also aim to determine jointly the optimal maintenance position, the optimal due-window size and location, and the optimal sequence to minimize the sum of earliness, tardiness and due-window related costs function. We show that all the studied problems can be optimally solved by polynomial time algorithms. 相似文献
17.
Recently learning effects in scheduling have received considerable attention in the literature. All but one paper are based on the learning-by-doing (or autonomous learning) assumption, even though proactive investments in know how (induced learning) are very important from a practical point of view. In this review we first discuss the questions why and when learning effects in scheduling environments might occur and should be regarded from a planning perspective. Afterwards we give a concise overview on the literature on scheduling with learning effects. 相似文献
18.
This study proposes an efficient exact algorithm for the precedence-constrained single-machine scheduling problem to minimize total job completion cost where machine idle time is forbidden. The proposed algorithm is based on the SSDP (Successive Sublimation Dynamic Programming) method and is an extension of the authors’ previous algorithms for the problem without precedence constraints. In this method, a lower bound is computed by solving a Lagrangian relaxation of the original problem via dynamic programming and then it is improved successively by adding constraints to the relaxation until the gap between the lower and upper bounds vanishes. Numerical experiments will show that the algorithm can solve all instances with up to 50 jobs of the precedence-constrained total weighted tardiness and total weighted earliness–tardiness problems, and most instances with 100 jobs of the former problem. 相似文献
19.
A note on single-machine scheduling with decreasing time-dependent job processing times 总被引:1,自引:0,他引:1
In this note we consider some single-machine scheduling problems with decreasing time-dependent job processing times. Decreasing time-dependent job processing times means that its processing time is a non-increasing function of its execution start time. We present polynomial solutions for the sum of squared completion times minimization problem, and the sum of earliness penalties minimization problem subject to no tardy jobs, respectively. We also study two resource constrained scheduling problems under the same decreasing time-dependent job processing times model and present algorithms to find their optimal solutions. 相似文献
20.
This paper studies single-machine scheduling problems with setup times which are proportionate to the length of the already scheduled jobs, that is, with past-sequence-dependent or p-s-d setup times. The following objective functions are considered: the maximum completion time (makespan), the total completion time, the total absolute differences in completion times and a bicriteria combination of the last two objective functions. It is shown that the standard single-machine scheduling problem with p-s-d setup times and any of the above objective functions can be solved in O(nlog n) time (where n is the number of jobs) by a sorting procedure. It is also shown that all of our results extend to a “learning” environment in which the p-s-d setup times are no longer linear functions of the already elapsed processing time due to learning effects. 相似文献