首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

2.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

3.
The theoretical formulation for bending analysis of functionally graded (FG) rotating disks based on first order shear deformation theory (FSDT) is presented. The material properties of the disk are assumed to be graded in the radial direction by a power law distribution of volume fractions of the constituents. New set of equilibrium equations with small deflections are developed. A semi-analytical solution for displacement field is given under three types of boundary conditions applied for solid and annular disks. Results are verified with known results reported in the literature. Also, mechanical responses are compared between homogeneous and FG disks. It is found that the stress couple resultants in a FG solid disk are less than the stress resultants in full-ceramic and full-metal disk. It is observed that the vertical displacements for FG mounted disk with free condition at the outer surface do not occur between the vertical displacements of the full-metal and full-ceramic disk. More specifically, the vertical displacement in a FG mounted disk with free condition at the outer surface can even be greater than vertical displacement in a full-metal disk. It can be concluded from this work that the gradation of the constitutive components is a significant parameter that can influence the mechanical responses of FG disks.  相似文献   

4.
A modified couple stress theory and a meshless method is used to study the bending of simply supported micro isotropic plates according to the first-order shear deformation plate theory, also known as the Mindlin plate theory. The modified couples tress theory involves only one length scale parameter and thus simplifies the theory, since experimentally it is easier to determine the single scale parameter. The equations governing bending of the first-order shear deformation theory are implemented using a meshless method based on collocation with radial basis functions. The numerical method is easy to implement, and it provides accurate results that are in excellent agreement with the analytical solutions.  相似文献   

5.
In the present work, attention is focused on the prediction of thermal buckling and post-buckling behaviors of functionally graded materials (FGM) beams based on Euler–Bernoulli, Timoshenko and various higher-order shear deformation beam theories. Two ends of the beam are assumed to be clamped and in-plane boundary conditions are immovable. The beam is subjected to uniform temperature rise and temperature dependency of the constituents is also taken into account. The governing equations are developed relative to neutral plane and mid-plane of the beam. A two-step perturbation method is employed to determine the critical buckling loads and post-buckling equilibrium paths. New results of thermal buckling and post-buckling analysis of the beams are presented and discussed in details, the numerical analysis shows that, for the case of uniform temperature rise loading, the post-buckling equilibrium path for FGM beam with two clamped ends is also of the bifurcation type for any arbitrary value of the power law index and any various displacement fields.  相似文献   

6.
A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates.  相似文献   

7.
Displacement field based on higher order shear deformation theory is implemented to study the static behavior of functionally graded metal–ceramic (FGM) beams under ambient temperature. FGM beams with variation of volume fraction of metal or ceramic based on power law exponent are considered. Using the principle of stationary potential energy, the finite element form of static equilibrium equation for FGM beam is presented. Two stiffness matrices are thus derived so that one among them will reflect the influence of rotation of the normal and the other shear rotation. Numerical results on the transverse deflection, axial and shear stresses in a moderately thick FGM beam under uniform distributed load for clamped–clamped and simply supported boundary conditions are discussed in depth. The effect of power law exponent for various combination of metal–ceramic FGM beam on the deflection and stresses are also commented. The studies reveal that, depending on whether the loading is on the ceramic rich face or metal rich face of the beam, the static deflection and the static stresses in the beam do not remain the same.  相似文献   

8.
Employing Euler–Bernoulli beam theory and the physical neutral surface concept, the nonlinear governing equation for the functionally graded material beam with two clamped ends and surface-bonded piezoelectric actuators is derived by the Hamilton’s principle. The thermo-piezoelectric buckling, nonlinear free vibration and dynamic stability for the piezoelectric functionally graded beams, subjected to one-dimensional steady heat conduction in the thickness direction, are studied. The critical buckling loads for the beam are obtained by the existing methods in the analysis of thermo-piezoelectric buckling. The Galerkin’s procedure and elliptic function are adopted to obtain the analytical solution of the nonlinear free vibration, and the incremental harmonic balance method is applied to obtain the principle unstable regions of the piezoelectric functionally graded beam. In the numerical examples, the good agreements between the present results and existing solutions verify the validity and accuracy of the present analysis and solving method. Simultaneously, validation of the results achieved by rule of mixture against those obtained via the Mori–Tanaka scheme is carried out, and excellent agreements are reported. The effects of the thermal load, electric load, and thermal properties of the constituent materials on the thermo-piezoelectric buckling, nonlinear free vibration, and dynamic stability of the piezoelectric functionally graded beam are discussed, and some meaningful conclusions have been drawn.  相似文献   

9.
Graphene-polymer nano-composites are one of the most applicable engineering nanostructures with superior mechanical properties. In the present study, a finite element (FE) approach based on the size dependent nonlocal elasticity theory is developed for buckling analysis of nano-scaled multi-layered graphene sheets (MLGSs) embedded in polymer matrix. The van der Waals (vdW) interactions between the graphene layers and graphene-polymer are simulated as a set of linear springs using the Lennard-Jones potential model. The governing stability equations for nonlocal classical orthotropic plates together with the weighted residual formulation are employed to explicitly obtain stiffness and buckling matrices for a multi-layered super element of MLGS. The accuracy of the current finite element analysis (FEA) is approved through a comparison with molecular dynamics (MD) and analytical solutions available in the literature. Effects of nonlocal parameter, dimensions, vdW interactions, elastic foundation, mode numbers and boundary conditions on critical in-plane loads are investigated for different types of MLGS. It is found that buckling loads of MLGS are generally of two types namely In-Phase (INPH) and Out-of-Phase (OPH) loads. The INPH loads are independent of interlayer vdW interactions while the OPH loads depend on vdW interactions. It is seen that the decreasing effect of nonlocal parameter on the OPH buckling loads dwindles as the interlayer vdW interactions become stronger. Also, it is found that the small scale and polymer substrate have noticeable effects on the buckling loads of embedded MLGS.  相似文献   

10.
In the present paper, a refined trigonometric higher-order plate theory is simply derived, which satisfies the free surface conditions. Moreover, the number of unknowns of this theory is the least one comparing with other shear theories. The effects of transverse shear strains as well as the transverse normal strain are taken into account. The number of unknown functions involved in the present theory is only four as against six or more in case of other shear and normal deformation theories. The bending response of FG rectangular plates is presented. A comparison with the corresponding results is made to check the accuracy and efficiency of the present theory. Additional results for all displacements and stresses are investigated through-the-thickness of the FG rectangular plate.  相似文献   

11.
This paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using Hamilton's principle and nonlinear strains of Von-Karman. The modified couple stress theory has been applied to considering small scale effects. An analytical approach was developing to obtain exact results with various boundary conditions. After all, results have been presented by change in some parameters, such as; aspect ratio, effect of various boundary conditions, electric voltage and length scale parameter influences. At the end, results showed that the effect of external electric voltage on the critical shear load occurring on the piezoelectric nanoplate is insignificant.  相似文献   

12.
A variety of micro-scale experiments have demonstrated that the mechanical property of some metals and polymers on the order of micron scale are size dependence. Taking into account the size effect on the mechanical property of materials and the inherent nonlinear property of electrostatic force, the static pull-in behavior of an electrostatically actuated Bernoulli–Euler microbeam is analyzed on the basis of a modified couple stress theory. The approximate analytical solutions to the pull-in voltage and pull-in displacement of the microbeam are derived by using the Rayleigh–Ritz method. The results show that the normalized pull-in voltage of the microbeam increases by a factor of 3.1 as the microbeam thickness equals to the material length scale parameter and exhibits size effect remarkably. However, the size effect on the pull-in voltage is almost diminishing as the microbeam thickness is far greater than the material length scale parameter. The normalized pull-in displacement of the microbeam exhibits size independence and equals to 0.448 and 0.398 for the cantilever beam and clamped–clamped beam, respectively.  相似文献   

13.
Thermal buckling of nanocolumns considering nonlocal effect and shear deformation is investigated based on the nonlocal elasticity theory and the Timoshenko beam theory. By expressing the nonlocal stress as nonlinear strain gradients and based on the variational principle and von Kármán nonlinearity, new higher-order differential governing equations with corresponding higher-order nonlocal boundary conditions both in transverse and axial directions for instability of nanocolumns are derived. New analytical solutions for some practical examples on instability of nanocolumns are presented and analyzed in detail. The paper concluded that the critical buckling load is significantly increased in the presence of nonlocal stress and the results confirm that nanocolumn stiffness is enhanced by nanoscale size effect and reduced by shear deformation. The critical temperature change is increased with larger diameter to length ratio and higher nonlocal nanoscale. It is also concluded that at low and room temperatures the buckling load of nanocolumns increases with increasing temperature change, while at high temperature the buckling load decreases with increasing temperature change.  相似文献   

14.
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.  相似文献   

15.
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model ...  相似文献   

16.
A nonclassical nonlinear continuum model of electrically actuated viscoelastic microbeams is presented based on the modified couple stress theory to consider the microstructure effect in the framework of viscoelasticity. The nonlinear integral-differential governing equation and related boundary conditions of are derived based on the extended Hamilton's principle and Euler–Bernoulli hypothesis for viscoelastic microbeams with clamped-free, clamped-clamped, simply-supported boundary conditions. The proposed model accounts for system nonlinearities including the axial residual stress, geometric nonlinearity due to midplane stretching, electrical forcing with fringing effect. The behavior of the microbeam is simulated using generalized Maxwell viscoelastic model. A new generalized differential/integral quadrature method is developed to solve the resulting governing equation. The developed model is verified against elastic behavior and a favorable agreement is obtained. Efficiency of the developed model is demonstrated by analyzing the quasistatic pull-in phenomena of electrically actuated viscoelastic microbeams with different boundaries at various material length scale parameters and axial residual stresses in the framework of linear viscoelasticity.  相似文献   

17.
In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.  相似文献   

18.
In this paper, three-dimensional elasticity solution is extended to investigate a FGPM finite length, simply supported shell panel under dynamic pressure excitation. The host panel is assumed to be of some functionally graded piezoelectric material (FGPM). The ordinary differential equations (o.d.e.) are derived from the highly coupled partial differential equations (p.d.e.) using series expansions of mechanical and electrical displacements. The resulting system of ordinary differential equations is solved by means of Galerkin finite element method. At last, numerical examples are presented for a FGPM shell panel. To verify the validity of code and formulation, the results of a FGM panel and a FGM plate are compared with the published results.  相似文献   

19.
The nonlinear free vibration of double-walled carbon nanotubes based on the nonlocal elasticity theory is studied in this paper. The nonlinear equations of motion of the double-walled carbon nanotubes are derived by using Euler beam theory and Hamilton principle, with considering the von Kármán type geometric nonlinearity and the nonlinear van der Waals forces. The surrounding elastic medium is formulated as the Winkler model. The harmonic balance method and Davidon–Fletcher–Powell method are utilized for the analysis and simulation of the nonlinear vibration. The simulation results show that the nonlocal parameter, aspect ratio and surrounding elastic medium play more important roles in the nonlinear noncoaxial vibration than those in the coaxial vibration of the double-walled carbon nanotubes. The noncoaxial vibration amplitudes of only considering nonlinear van der Waals forces are larger than those of considering both geometric nonlinearity and nonlinear van der Waals forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号