首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study analyses the pulsatile flow of blood through mild stenosed narrow arteries, treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is employed to solve the resulting coupled implicit system of non-linear partial differential equations. The expressions for shear stress, velocity, wall shear stress, plug core radius, flow rate and longitudinal impedance to flow are obtained. The effects of pulsatility, stenosis depth, peripheral layer thickness, body acceleration and non-Newtonian behavior of blood on these flow quantities are discussed. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow increase as the yield stress and stenosis depth increase and they decrease with the increase of the body acceleration, pressure gradient, width of the peripheral layer thickness. It is observed that the plug flow velocity and flow rate increase with the increase of the pulsatile Reynolds number, body acceleration, pressure gradient and the width of the peripheral layer thickness and the reverse behavior is found when the yield stress, stenosis depth and lead angle increase. It is also recorded that the wall shear stress and longitudinal impedance to flow are considerably lower for the two-fluid Casson model than that of the single-fluid Casson model. It is found that the presence of body acceleration and peripheral layer influences the mean flow rate and mean velocity by increasing their magnitude significantly in the arteries.  相似文献   

2.
The paper deals with numerical investigation of the effect of plaque morphology on the flow characteristics in a diseased coronary artery using realistic plaque morphology. The morphological information of the lumen and the plaque is obtained from intravascular ultrasound imaging measurements of 42 patients performed at Cleveland Clinic Foundation, Ohio. For this data, study of Bhaganagar et al. (2010) [1] has revealed the stenosis for 42 patients can be categorized into four types – type I (peak-valley), type II (ascending), type III (descending), and type IV (diffuse). The aim of the present study is to isolate the effect of shape of the stenosis on the flow characteristics for a given degree of the stenosis. In this study, we conduct fluid dynamic simulations for the four stenosis types (type I–IV) and analyze the differences in the flow characteristics between these types. Finely refined tetrahedral mesh for the 3-D solid model of the artery with plaques has been generated. The 3-D steady flow simulations were performed using the turbulence (kε) model in a finite volume based computational fluid dynamics solver. The axial velocity, the radial velocity, turbulence kinetic energy and wall shear stress profiles of the plaque have been analyzed. From the axial and radial velocity profiles results the differences in the velocity patterns are significantly visible at proximal as well as distal to the throat, region of maximum stenosis. Turbulent kinetic energy and wall shear stress profiles have revealed significant differences in the vicinity of the plaque. Additional unsteady flow simulations have been performed to validate the hypothesis of the significance of plaque morphology in flow alterations in diseased coronary artery. The results revealed the importance of accounting for plaque morphology in addition to plaque height to accurately characterize the turbulent flow in a diseased coronary artery.  相似文献   

3.
The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.  相似文献   

4.
The pulsatile flow of blood through mild stenosed artery is studied. The effects of pulsatility, stenosis and non-Newtonian behavior of blood, treating the blood as Herschel–Bulkley fluid, are simultaneously considered. A perturbation method is used to analyze the flow. The expressions for the shear stress, velocity, flow rate, wall shear stress, longitudinal impedance and the plug core radius have been obtained. The variations of these flow quantities with different parameters of the fluid have been analyzed. It is found that, the plug core radius, pressure drop and wall shear stress increase with the increase of yield stress or the stenosis height. The velocity and the wall shear stress increase considerably with the increase in the amplitude of the pressure drop. It is clear that for a given value of stenosis height and for the increasing values of the stenosis shape parameter from 3 to 6, there is a sharp increase in the impedance of the flow and also the plots are skewed to the right-hand side. It is observed that the estimates of the increase in the longitudinal impedance increase with the increase of the axial distance or with the increase of the stenosis height. The present study also brings out the effects of asymmetric of the stenosis on the flow quantities.  相似文献   

5.
The derivation of the space averaged Navier–Stokes equations for the large eddy simulation (LES) of turbulent incompressible flows introduces two groups of terms which do not depend only on the space averaged flow field variables: the divergence of the Reynolds stress tensor and commutation errors. Whereas the former is studied intensively in the literature, the latter terms are usually neglected. This note studies the asymptotic behaviour of these terms for the turbulent channel flow at a wall in the case that the commutation errors arise from the application of a non‐uniform box filter. To perform analytical calculations, the unknown flow field is modelled by a wall law (Reichardt law and 1/αth power law) for the mean velocity profile and highly oscillating functions model the turbulent fluctuations. The asymptotics show that near the wall, the commutation errors are at least as important as the divergence of the Reynolds stress tensor. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In the present paper, blood flow through a tapered artery with a stenosis is analyzed, assuming the flow is steady and blood is treated as non-Newtonian power law fluid model. Exact solution has been evaluated for velocity, resistance impedance, wall shear stress and shearing stress at the stenosis throat. The graphical results of different types of tapered arteries (i.e. converging tapering, diverging tapering, non-tapered artery) have been examined for different parameters of interest. Some special cases of the problem are also presented.  相似文献   

7.
Determination of arterial wall shear stress   总被引:4,自引:0,他引:4  
The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.  相似文献   

8.
Of concern in the paper is a theoretical study of blood flow in an arterial segment in the presence of a time-dependent overlapping stenosis using an appropriate mathematical model. A remarkably new shape of the stenosis in the realm of the formation of the arterial narrowing caused by atheroma is constructed mathematically. The artery is simulated as an elastic (moving wall) cylindrical tube containing a viscoelastic fluid representing blood. The unsteady flow mechanism of the present investigation is subjected to a pulsatile pressure gradient arising from the normal functioning of the heart. The equations governing the motion of the system are sought in the Laplace transform space and their relevant solutions supplemented by the suitable boundary conditions are obtained numerically in the transformed domain through the use of an appropriate finite difference technique. Laplace inversion is also carried out by employing numerical techniques. A thorough quantitative analysis is performed at the end of the paper for the flow velocity, the flux, the resistive impedances, and the wall shear stresses together with their variations with the time, the pressure gradient, and the severity of the stenosis in order to illustrate the applicability of the present mathematical model under consideration.  相似文献   

9.
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.  相似文献   

10.
Igor Vigdorovich  Martin Oberlack 《PAMM》2008,8(1):10607-10608
An incompressible, pressure–driven, fully developed turbulent flow between two parallel walls, with an extra constant transverse velocity component, is considered. A closure condition is formulated, which relates the shear stress to the first and second derivatives of the longitudinal mean velocity. The closure condition is derived without invoking any special hypotheses on the nature of turbulent motion, only taking advantage of the fact that the flow depends on a finite number of governing parameters. By virtue of the closure condition, the momentum equation is reduced to the boundary–value problem for a second–order differential equation, which is solved by the method of matched asymptotic expansions at high values of the logarithm of the Reynolds number based on the friction velocity. A limiting transpiration velocity is obtained, such that the shear stress at the injection wall vanishes, while the maximum point on the velocity profile approaches the suction wall. In this case, a sublayer near the suction wall appears where the mean velocity is proportional to the square root of the distance from the wall. A friction law for Poiseuille flow with transpiration is found, which makes it possible to describe the relation between the wall shear stress, the Reynolds number, and the transpiration velocity by a function of one variable. A velocity defect law, which generalizes the classical law for the core region in a channel with impermeable walls to the case of transpiration, is also established. In similarity variables, the mean velocity profiles across the whole channel width outside viscous sublayers can be described by a one–parameter family of curves. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The pulsatile flow of blood through catheterized artery has been studied in this paper by modeling blood as Herschel–Bulkley fluid and the catheter and artery as rigid coaxial circular cylinders. The Herschel–Bulkley fluid has two parameters, the yield stress θ and the power index n. Perturbation method is used to solve the resulting quasi-steady nonlinear coupled implicit system of differential equations. The effects of catheterization and non-Newtonian nature of blood on yield plane locations, velocity, flow rate, wall shear stress and longitudinal impedance of the artery are discussed. The existence of two yield plane locations is investigated and their dependence on yield stress θ, amplitude A, and time t are analyzed. The width of the plug core region increases with increasing value of yield stress at any time. The velocity and flow rate decrease, whereas wall shear stress and longitudinal impedance increase for increasing value of yield stress with other parameters held fixed. On the other hand, the velocity, flow rate and wall shear stress decrease but resistance to flow increases as the catheter radius ratio (ratio of catheter radius to vessel radius) increases with other parameters fixed. The results for power law fluid, Newtonian fluid and Bingham fluid are obtained as special cases from this model.  相似文献   

12.
Steady combined forced and free convection is investigated in a vertical channel having a wall at rest and a moving wall subjected to a prescribed shear stress. The moving wall is thermally insulated, while the wall at rest is kept at a uniform temperature. The analysis deals with the fully–developed parallel flow regime. The governing equations yield a boundary value problem, that is solved analytically by employing a power series expansion of the velocity field with respect to the transverse coordinate. It is shown that the nonlinear interplay between buoyancy and viscous dissipation may determine the existence of dual solutions of the boundary value problem corresponding to fixed values of the applied shear stress on the moving wall and of the hydrodynamic pressure gradient. It is shown that a nontrivial fully separated flow may occur such that the hydrodynamic pressure gradient is zero and the shear stress vanishes on both walls. E. Magyari: On leave from Institute of Building Technology, ETH – Zürich  相似文献   

13.
Numerical predictions are presented of the hydrodynamic characteristics of developing and fully-developed turbulent flow in a square duct. The turbulent stresses in the plane of the cross-section, gradients of which cause the familiar secondary flows, are approximated by gradients in the axial mean velocity. Two distinct approximations are investigated, one of which specifies some of the model ‘constants’ as functions of the gradient of the length scale to account for wall effects. The stresses in the axial momentum equation are calculated from an eddy viscosity deduced from the K-W model of turbulence, K being the turbulence energy and W, a measure of the time-mean-square-vorticity fluctuations. The approximation incorporating wall effects generally performs better than the other when compared with fully-developed flow-data. This same approximation also compares favourably with data for developing flow and predictions based on K-? models in the literature.  相似文献   

14.
A numerical algorithm was developed for solving the incompressible Navier-Stokes equations in curvilinear orthogonal coordinates. The algorithm is based on a central-difference discretization in space and on a third-order accurate semi-implicit Runge-Kutta scheme for time integration. The discrete equations inherit some properties of the original differential equations, in particular, the neutrality of the convective terms and the pressure gradient in the kinetic energy production. The method was applied to the direct numerical simulation of turbulent flows between two eccentric cylinders. Numerical computations were performed at Re = 4000 (where the Reynolds number Re was defined in terms of the mean velocity and the hydraulic diameter). It was found that two types of flow develop depending on the geometric parameters. In the flow of one type, turbulent fluctuations were observed over the entire cross section of the pipe, including the narrowest gap, where the local Reynolds number was only about 500. The flow of the other type was divided into turbulent and laminar regions (in the wide and narrow parts of the gap, respectively).  相似文献   

15.
纤维悬浮剪切湍流中纤维旋转扩散系数的理论研究   总被引:1,自引:1,他引:0  
对纤维悬浮剪切湍流中纤维旋转扩散系数进行了理论研究.首先建立了流场不同脉动速度梯度间的相关矩函数,然后推导出了纤维旋转扩散系数的表达式,该表达式依赖于特征长度、时间、速度和一个与壁面作用相关的无量纲参数.得到的纤维旋转扩散系数可以应用于非均匀和非各向同性的湍流场,此外还可以推广到三维湍流场,因而为纤维悬浮湍流场的研究提供了理论基础.  相似文献   

16.
This paper looked at the numerical investigations of the generalized Newtonian blood flow through a couple of irregular arterial stenoses. The flow is treated to be axisymmetric, with an outline of the stenoses obtained from a three dimensional casting of a mild stenosed artery, so that the flow effectively becomes two‐dimensional. The Marker and Cell (MAC) method is developed for the governing unsteady generalized Newtonian equations in staggered grid for viscous incompressible flow in the cylindrical polar co‐ordinates system. The derived pressure‐Poisson equation was solved using Successive‐Over‐Relaxation (S.O.R.) method and the pressure‐velocity correction formulae have been derived. Computations are performed for the pressure drop, the wall shear stress distribution and the separation region. The presented computations show that in comparison to the corresponding Newtonian model the generalized Newtonian fluid experiences higher pressure drop, lower peak wall shear stress and smaller separation region. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 960–981, 2011  相似文献   

17.
The influence of the mean plane strain on the turbulence transportation is investigated by large eddy simulation (LES) in the shearless turbulence mixing layer. It is found that the mean strains enhance the turbulent fluctuations in the mixing region. Compression in the inhomogeneous direction can greatly increase the transport of turbulent kinetic energy by triple correlation terms, while stretching in the inhomogeneous direction decreases the turbulence transportation. The gradient diffusion models for turbulent transportation are evaluated and it is found that the intermittency consideration can improve the prediction ability of the gradient-type models for the triple correlation terms. Project supported by the Sino-French Laboratory in Beijing and the National Natural Science Foundation of China (Grant No. 19572041).  相似文献   

18.
Pulsatile flow of blood through mild stenosed narrow arteries is analyzed by treating the blood in the core region as a Casson fluid and the plasma in the peripheral layer as a Newtonian fluid. Perturbation method is used to solve the coupled implicit system of non-linear differential equations. The expressions for velocity, wall shear stress, plug core radius, flow rate and resistance to flow are obtained. The effects of pulsatility, stenosis, peripheral layer and non-Newtonian behavior of blood on these flow quantities are discussed. It is found that the pressure drop, plug core radius, wall shear stress and resistance to flow increase with the increase of the yield stress or stenosis size while all other parameters held constant. The percentage of increase in the resistance to flow over the uniform diameter tube is considerably very low for the present two-fluid model compared with those of the single-fluid model.  相似文献   

19.
T型分叉血管的定常/脉动流动和大分子传质   总被引:1,自引:1,他引:0  
采用计算流体动力学方法,数值求解了T型分叉流动的定常/脉动流场和低密度脂蛋白(LDL)以及血清白蛋白(Albumin)的浓度分布。计算了雷诺数、主管和支管的流量比等参数对流场和大分子传质的影响,计算结果表明,流体动力学因素影响大分子的分布和跨壁渗透,在动脉硬化的发生和发展过程中起着重要的作用。在流动发生分离处,即支管入口外侧壁面剪应力变化最剧烈,这儿LDL和Albumin的壁面浓度变化也是最剧烈,是动脉硬化危险区。  相似文献   

20.
本文应用谱分析理论研究了剪切湍流场中的压力脉动,包括功率谱、均方值等.通过对压力脉动Possion方程的Fourier变换,首先将压力脉动谱表示成速度脉动谱的形式.利用Navier-Stokes方程的形式解及准正态分布假设,可以进一步将压力脉动功率谱表达式中所包含的速度脉动的三阶相关与四阶相关表示成速度脉动的二阶相关(功率谱).最后,引入高雷诺数流的速度脉动功率谱模型,导出了由湍动e0,耗散ε,雷诺应力-iuj>及时均速度梯度表示的压力脉动均方值的湍流模式,并同现有数据进行了比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号