首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The hp-version of the finite element method based on a triangular p-element is applied to free vibration of the orthotropic triangular and rectangular plates. The element's hierarchical shape functions, expressed in terms of shifted Legendre orthogonal polynomials, is developed for orthotropic plate analysis by taking into account shear deformation, rotary inertia, and other kinematics effects. Numerical results of frequency calculations are found for the free vibration of the orthotropic triangular and rectangular plates with the effect of the fiber orientation and plate boundary conditions. The results are very well compared to those presented in the literature.  相似文献   

2.
Analytical solutions for bending, buckling, and vibration analyses of thick rectangular plates with various boundary conditions are presented using two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using shear correction factor. In addition, it contains only two unknowns and has strong similarities with the classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion are derived from Hamilton’s principle. Closed-form solutions of deflection, buckling load, and natural frequency are obtained for rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. Comparison studies are presented to verify the validity of present solutions. It is found that the deflection, stress, buckling load, and natural frequency obtained by the present theory match well with those obtained by the first-order and third-order shear deformation theories.  相似文献   

3.
In this paper, exact closed-form solutions in explicit forms are presented for transverse vibration analysis of rectangular thick plates having two opposite edges hard simply supported (i.e., Lévy-type rectangular plates) based on the Reddy’s third-order shear deformation plate theory. Two other edges may be restrained by different combinations of free, soft simply supported, hard simply supported or clamped boundary conditions. Hamilton’s principle is used to derive the equations of motion and natural boundary conditions of the plate. Several comparison studies with analytical and numerical techniques reported in literature are carried out to demonstrate accuracy of the present new formulation. Comprehensive benchmark results for natural frequencies of rectangular plates with different combinations of boundary conditions are tabulated in dimensionless form for various values of aspect ratios and thickness to length ratios. A set of three-dimensional (3-D) vibration mode shapes along with their corresponding contour plots are plotted by using exact transverse displacements of Lévy-type rectangular Reddy plates. Due to the inherent features of the present exact closed-form solution, the present findings will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future.  相似文献   

4.
In this paper, a simple and efficient mixed Ritz-differential quadrature (DQ) method is presented for free vibration and buckling analysis of orthotropic rectangular plates. The mixed scheme combines the simplicity of the Ritz method and high accuracy and efficiency of the DQ method. The accuracy of the proposed method is demonstrated by comparing the calculated results with those available in the literature. It is shown that highly accurate results can be obtained using a small number of Ritz terms and DQ sample points. The proposed method is suitable for the problem considered due to its simplicity and potential for further development.  相似文献   

5.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

6.
This paper presents the free vibration analysis of piezoelectric coupled annular plates with variable thickness on the basis of the Mindlin plate theory. No work has yet been done on piezoelectric laminated plates while the thickness is variable. Two piezoelectric layers are embedded on the upper and lower surfaces of the host plate. The host plate thickness is linearly increased in the radial direction while the piezoelectric layers thicknesses remain constant along the radial direction. Different combinations of three types of boundary conditions i.e. clamped, simply supported, and free end conditions are considered at the inner and outer edges of plate. The Maxwell static electricity equation in piezoelectric layers is satisfied using a quadratic distribution of electric potential along the thickness. The natural frequencies are obtained utilizing a Rayleigh–Ritz energy approach and are validated by comparing with those obtained by finite element analysis. A good compliance is observed between numerical solution and finite element analysis. Convergence study is performed in order to verify the numerical stability of the present method. The effects of different geometrical parameters such as the thickness of piezoelectric layers and the angle of host plate on the natural frequencies of the assembly are investigated.  相似文献   

7.
It is of significance to explore benchmark analytic free vibration solutions of rectangular thick plates without two parallel simply supported edges, because the classic analytic methods are usually invalid for the problems of this category. The main challenge is to find the solutions meeting both the governing higher order partial differential equations (PDEs) and boundary conditions of the plates, i.e., to analytically solve associated complex boundary value problems of PDEs. In this letter, we extend a novel symplectic superposition method to the free vibration problems of clamped rectangular thick plates, with the analytic frequency solutions obtained by a brief set of equations. It is found that the analytic solutions of clamped plates can simply reduce to their variants with any combinations of clamped and simply supported edges via an easy relaxation of boundary conditions. The new results yielded in this letter are not only useful for rapid design of thick plate structures but also provide reliable benchmarks for checking the validity of other new solution methods.  相似文献   

8.
Using a three-dimensional layerwise-finite element method, the free vibration of thick laminated circular and annular plates supported on the elastic foundation is studied. The Pasternak-type formulation is employed to model the interaction between the plate and the elastic foundation. The discretized governing equations are derived using the Hamilton’s principle in conjunction with the layerwise theory in the thickness direction, the finite element (FE) in the radial direction and trigonometric function in the circumferential direction, respectively. The fast rate of convergence of the method is demonstrated and to verify its accuracy, comparison studies with the available solutions in the literature are performed. The effects of the geometrical parameters, the material properties and the elastic foundation parameters on the natural frequency parameters of the laminated thick circular and annular plates subjected to various boundary conditions are presented.  相似文献   

9.
The main objective of this research work is to present analytical solutions for free vibration analysis of moderately thick rectangular plates, which are composed of functionally graded materials (FGMs) and supported by either Winkler or Pasternak elastic foundations. The proposed rectangular plates have two opposite edges simply-supported, while all possible combinations of free, simply-supported and clamped boundary conditions are applied to the other two edges. In order to capture fundamental frequencies of the functionally graded (FG) rectangular plates resting on elastic foundation, the analysis procedure is based on the first-order shear deformation plate theory (FSDT) to derive and solve exactly the equations of motion. The mechanical properties of the FG plates are assumed to vary continuously through the thickness of the plate and obey a power law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. First, a new formula for the shear correction factors, used in the Mindlin plate theory, is obtained for FG plates. Then the excellent accuracy of the present analytical solutions is confirmed by making some comparisons of the results with those available in literature. The effect of foundation stiffness parameters on the free vibration of the FG plates, constrained by different combinations of classical boundary conditions, is also presented for various values of aspect ratios, gradient indices, and thickness to length ratios.  相似文献   

10.
The subject of this article is solving free vibration problems of isotropic and orthotropic rectangular plates with linearly varying thickness along one direction. For the numerical solution to evaluate the frequencies of plates, the method of discrete singular convolution (DSC) is adopted. Frequency parameters are obtained for different types of boundary conditions, taper and aspect ratios. The effect of the mode number is also analyzed. The results obtained by the present numerical method show an excellent agreement with available published results.  相似文献   

11.
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.  相似文献   

12.
An accurate free vibration analysis of skew plates is presented by using the new version of the differential quadrature method (DQM). Eight combinations of simply supported (S), clamped (C) and free (F) boundary conditions are considered. Detailed solution procedures are given and key points for success by using the DQM are emphasized. A way to simplifying the programming in using the DQM is proposed. Convergence study is made for the simply supported skew plate with a large skew angle. Good convergence of frequencies is observed. The DQ results agree very well with the existing first known accurate upper bound solutions, obtained by using Ritz method taking into considerations of the bending stress singularities occurred at corners having obtuse angles. Since slight discrepancy between the DQ data and the known accurate solutions is observed for plates with large skew angles, the DQ results are also compared with data obtained by using finite element method with very fine meshes to verify their accuracy.  相似文献   

13.
An analytical solution based on a new exact closed form procedure is presented for free vibration analysis of stepped circular and annular FG plates via first order shear deformation plate theory of Mindlin. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson’s ratio is set to be constant. Based on the domain decomposition technique, five highly coupled governing partial differential equations of motion for freely vibrating FG plates were exactly solved by introducing the new potential functions as well as using the method of separation of variables. Several comparison studies were presented by those reported in the literature and the FEM analysis, for various thickness values and combinations of stepped thickness variations of circular/annular FG plates to demonstrate highly stability and accuracy of present exact procedure. The effect of the geometrical and material plate parameters such as step thickness ratios, step locations and the power law index on the natural frequencies of FG plates is investigated.  相似文献   

14.
Exact bending solutions of fully clamped orthotropic rectangular thin plates subjected to arbitrary loads are derived using the finite integral transform method. In the proposed mathematical method one does not need to predetermine the deformation function because only the basic governing equations of the classical plate theory for orthotropic plates are used in the procedure. Therefore, unlike conventional semi-inverse methods, it serves as a completely rational and accurate model in plate bending analysis. The applicability of the method is extensive, and it can handle plates with different loadings in a uniform procedure, which is simpler than previous methods. Numerical results are presented to demonstrate the validity and accuracy of the approach as compared with those previously reported in the bibliography.  相似文献   

15.
Bending and free vibration behaviour of laminated soft core skew sandwich plate with stiff laminate face sheets is investigated using a recently developed C0 finite element (FE) model based on higher order zigzag theory (HOZT) in this paper. The in-plane displacement fields are assumed as a combination of a linear zigzag function with different slopes at each layer and a cubically varying function over the entire thickness. The out of plane displacement is considered to be quadratic within the core and constant in the face sheets. The plate theory ensures a shear stress-free condition at the top and bottom surfaces of the plate. Thus, the plate theory has all of the features required for accurate modelling of laminated skew sandwich plates. As very few element model based on this plate theory (HOZT) exist and they possess certain disadvantages, an attempt has been made to check the applicability of the refined element model. The nodal field variables are chosen in such a manner that there is no need to impose any penalty stiffness in the formulation. Refined C0 finite element model has been utilized to study some interesting problems on static and free vibration analysis of laminated skew sandwich plates.  相似文献   

16.
This study analyses the free vibrations of circular thin plates for simply supported, clamped and free boundary conditions. The solution method used is differential transform method (DTM), which is a semi-numerical-analytical solution technique that can be applied to various types of differential equations. By using DTM, the governing differential equations are reduced to recurrence relations and its related boundary/regularity conditions are transformed into a set of algebraic equations. The frequency equations are obtained for the possible combinations of the outer edge boundary conditions and the regularity conditions at the center of the circular plate. Numerical results for the dimensionless natural frequencies are presented and then compared to the Bessel function solution and the numerical solutions that appear in literature. It is observed that DTM is a robust and powerful tool for eigenvalue analysis of circular thin plates.  相似文献   

17.
This paper presents a very first combined application of Ritz method and differential quadrature (DQ) method to vibration problem of rectangular plates. In this study, the spatial partial derivatives with respect to a coordinate direction are first discretized using the Ritz method. The resulting system of partial differential equations and the related boundary conditions are then discretized in strong form using the DQ method. The mixed method combines the simplicity of the Ritz method and high accuracy and efficiency of the DQ method. The results are obtained for various types of boundary conditions. Comparisons are made with existing analytical and numerical solutions in the literature. Numerical results prove that the present method is very suitable for the problem considered due to its simplicity, efficiency, and high accuracy.  相似文献   

18.
An analysis of the transverse vibration of nonhomogeneous orthotropic viscoelastic circular plates of parabolically varying thickness in the radial direction is presented. The thickness of a circular plate varies parabolically in a radial direction. For nonhomogeneity of the circular plate material, density is assumed to vary linearly in a radial direction. This paper used the method of separation of variables in solving the governing differential equation. In this paper, an approximate but quite convenient frequency equation is derived by using the Rayleigh–Ritz technique with a two‐term deflection function. Deflection, time period and logarithmic decrement for the first two modes of vibration are computed for the nonhomogeneous orthotropic viscoelastic circular plates of varying parabolic thickness with clamped edge conditions for various values of nonhomogeneity constants and taper constants and these are shown in tabular form for the Voigt–Kelvin model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Two new hyperbolic displacement models, HPSDT1 and HPSDT2, are used for the buckling and free vibration analyses of simply supported orthotropic laminated composite plates. The models contain hyperbolic expressions to account for the parabolic distributions of transverse shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The equation of motion for thick laminated rectangular plates subjected to in-plane loads is deduced through the use of Hamilton’s principle. Closed-form solutions are obtained by using the Navier technique, and then the buckling loads and the fundamental frequencies are found by solving eigenvalue problems. The accuracy of the models presented is demonstrated by comparing the results obtained with solutions of other higher-order models given in the literature. It is found that the theories proposed can predict the fundamental frequencies and buckling loads of cross-ply laminated composite plates rather accurately. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 2, pp. 217–230, March–April, 2008.  相似文献   

20.
In the present paper, a refined trigonometric higher-order plate theory is simply derived, which satisfies the free surface conditions. Moreover, the number of unknowns of this theory is the least one comparing with other shear theories. The effects of transverse shear strains as well as the transverse normal strain are taken into account. The number of unknown functions involved in the present theory is only four as against six or more in case of other shear and normal deformation theories. The bending response of FG rectangular plates is presented. A comparison with the corresponding results is made to check the accuracy and efficiency of the present theory. Additional results for all displacements and stresses are investigated through-the-thickness of the FG rectangular plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号