首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problems of stochastic stability and robust control for a class of uncertain sampled-data systems are studied. The systems consist of random jumping parameters described by finite-state semi-Markov process. Sufficient conditions for stochastic stability or exponential mean square stability of the systems are presented. The conditions for the existence of a sampled-data feedback control and a multirate sampled-data optimal control for the continuous-time uncertain Markovian jump systems are also obtained. The design procedure for robust multirate sampled-data control is formulated as linear matrix inequalities (LMIs), which can be solved efficiently by available software toolboxes. Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed techniques.  相似文献   

2.
In this paper, the problem of stochastic stabilization for a class of discrete-time singular Markovian jump systems with time-varying delay is investigated. By using the Lyapunov functional method and delay decomposition approach, improved delay-dependent sufficient conditions are presented, which guarantee the considered systems to be regular, causal and stochastically stabilizable. Finally, some numerical examples are provided to illustrate the effectiveness of the obtained methods.  相似文献   

3.
4.
This paper deals with the mean-square asymptotic stability of stochastic Markovian jump systems with time-varying delay. Based on a new stochastic inequality and convex analysis property, some novel stability conditions are presented. In the derivation, the information of the time-varying delay is retained and the estimation of it by the worst-case enlargement is not involved. Some special cases of the systems under consideration are also investigated. Illustrative examples are given to show the effectiveness of the proposed approach.  相似文献   

5.
6.
In this paper, an efficient approach of modeling and control is presented for Multi-Rate Networked Control System (MRNCS) with considering long time delay. Firstly, the system is modeled as a switched system with a random switching signal which is subject to random networked-induced delay. For this, time delay is defined as a Markov chain and the model of MRNCS is obtained as a Markovian jump linear system. Afterward, a dynamic output feedback controller is designed for output tracking as well as stabilization of closed-loop system. The modeling and control of MRNCS are presented for two structures. At first, a new model of single-side MRNCS is proposed and a mode-independent controller is designed for stabilizing the system. Then the proposed modeling method is generalized to double-side MRNCS and by introducing the Set of Possible Modes (SPM) concept, an SPM-dependent controller is proposed for double-side MRNCS. To show the effectiveness of the proposed methods, some numerical results are provided on the quadruple-tank process.  相似文献   

7.
In this paper, the stability problem is investigated for networked control systems. Input delays and multiple communication imperfections containing time-varying transmission intervals and transmission protocols are considered. A unified framework based on the hybrid systems with memory is proposed to model the whole networked control system. Hybrid systems with memory are used to model hybrid systems affected by delays and permit multiple jumps at a jumping instant. The stability analysis depends on the Lyapunov–Krasovskii functional approaches for hybrid systems with memory and the proposed stability theorem does not need strict decrease of the Lyapunov–Krasovskii functional during jumps. Based on the developed stability theorems, stability conditions for networked control systems are established. An explicit formula is given to compute the maximal allowable transmission interval. In the special case that the networked control system contains linear dynamics, an explicit Lyapunov functional is constructed and stability conditions in terms of linear matrix inequalities (LMI) are proposed. Finally, an example of a chemical batch reactor is given to illustrate the effectiveness of the proposed results.  相似文献   

8.
This paper deals with a stochastic stability concept for discrete-time Markovian jump linear systems. The random jump parameter is associated to changes between the system operation modes due to failures or repairs, which can be well described by an underlying finite-state Markov chain. In the model studied, a fixed number of failures or repairs is allowed, after which, the system is brought to a halt for maintenance or for replacement. The usual concepts of stochastic stability are related to pure infinite horizon problems, and are not appropriate in this scenario. A new stability concept is introduced, named stochastic τ-stability that is tailored to the present setting. Necessary and sufficient conditions to ensure the stochastic τ-stability are provided, and the almost sure stability concept associated with this class of processes is also addressed. The paper also develops equivalences among second order concepts that parallels the results for infinite horizon problems.  相似文献   

9.
Abstract

A problem of feedback stabilization of hybrid systems with time-varying delay and Markovian switching is considered. Delay-dependent sufficient conditions for stability based on linear matrix inequalities (LMI's) for stochastic asymptotic stability is obtained. The stability result depended on the mode of the system and of delay-dependent. The robustness results of such stability concept against all admissible uncertainties are also investigated. This new delay-dependent stability criteria is less conservative than the existing delay-independent stability conditions. An example is given to demonstrate the obtained results.  相似文献   

10.
11.
A new control mode is proposed for networked control systems whose network-induced delay is longer than a sampling period. The proposed control mode can make full use of control information and improve the performance of the system. Under the control mode, the mathematical model of networked control systems is obtained. Markov characteristic of the transfer delay is discussed. Based on Markov chain theory, the infinite horizon controller is designed, which is shown to render corresponding networked control systems mean square exponentially stable. Simulation results show the validity of the proposed theory.  相似文献   

12.
Abstract

This article is concerned with the problem of p-moment stability of stochastic differential delay equations with impulsive jump and Markovian switching. In this model, the features of stochastic systems, delay systems, impulsive systems, and Markovian switching are all taken into account, which is scarce in the literature. Based on Lyapunov–Krasovskii functional method and stochastic analysis theory, we obtain new criteria ensuring p-moment stability of trivial solution of a class of impulsive stochastic differential delay equations with Markovian switching.  相似文献   

13.
In this paper, some criteria on pth moment stability and almost sure stability with general decay rates of stochastic differential delay equations with Poisson jumps and Markovian switching are obtained. Two examples are presented to illustrate our theories.  相似文献   

14.
Wei Shen  Xiaoyu Su 《Complexity》2016,21(Z2):623-634
This article is concerned with observer and controller design for networked control systems, where the considered plant refers to a class of discrete‐time communication delay Markovian jump systems. In the study, random packet losses and output quantization are considered simultaneously. The packet losses considered here includes sensor to controller and controller to actuator sides, which are modeled as two Bernoulli distributed white sequences, respectively. An observer‐based control scheme is developed to stabilize the closed‐loop systems. Finally, an illustrative example is provided to show the applicability of the proposed control method. © 2016 Wiley Periodicals, Inc. Complexity 21: 623–634, 2016  相似文献   

15.
The paper deals with the problem of state feedback controller design for singular positive Markovian jump systems with partly known transition rates. First, by applying an appropriate linear co-positive type Lyapunov–Krasovskii function, stochastic stability of the underlying systems is discussed. Based on the results obtained, a state feedback controller is constructed such that the closed-loop singular Markovian jump system is regular, impulse-free, positive and stochastically stable. All the provided conditions are based on a reliable computational approach in linear programming. Finally, an example is given to demonstrate the validity of the main results.  相似文献   

16.
《Applied Mathematical Modelling》2014,38(5-6):1685-1697
This paper is concerned with the problem of output feedback stabilization for a class of discrete-time systems with sector nonlinearities and imperfect measurements. A unified control law model is proposed to take the network-induced delay, random packet dropout and measurement quantization into consideration simultaneously. By choosing appropriate Lyapunov functional, a new stability condition, which is dependent on multiple network status, is established for the resulting closed-loop system. Based on the result, a design criterion for the static output feedback controller is formulated in the form of nonconvex matrix inequalities, and the cone complementary linearization (CCL) procedure is exploited to solve the nonconvex feasibility problem. Incidentally, a less conservative synthesis method is also developed for the state feedback stabilization purpose. Finally, two illustrative examples are provided to illustrate the effectiveness and applicability of the proposed design method.  相似文献   

17.
Abstract

This article is intended to study global asymptotical stability in probability for random impulsive coupled systems on networks with Markovian switching. Two cases are considered. (1) Continuous dynamics are stable while impulses are unstable; (2) impulses are stable while continuous dynamics are unstable. To begin with, based on Lyapunov method as well as graph-theoretic technique, several new stability criteria in two cases are derived, that are, the Lyapunov-type criteria and the coefficients-type criteria. Then main results are used for a class of random impulsive coupled oscillators. Finally, the effectiveness of the obtained results is verified by numerical simulations.  相似文献   

18.
In this paper, the problem of stochastic stability for a class of time-delay Hopfield neural networks with Markovian jump parameters is investigated. The jumping parameters are modeled as a continuous-time, discrete-state Markov process. Without assuming the boundedness, monotonicity and differentiability of the activation functions, some results for delay-dependent stochastic stability criteria for the Markovian jumping Hopfield neural networks (MJDHNNs) with time-delay are developed. We establish that the sufficient conditions can be essentially solved in terms of linear matrix inequalities.  相似文献   

19.
This paper studies the H-infinity control issue for a class of networked control systems (NCSs) with time delay and packet dropout. The state feedback closed-loop NCS is modeled as a discrete-time switched system. Through using a Lyapunov function, a sufficient condition is obtained, under which the system is exponential stability with a desired H-infinity disturbance attenuation level. The designed H-infinity controller is obtained by solving a set of linear matrix inequalities. An illustrative example is presented to demonstrate the effectiveness of the proposed method.  相似文献   

20.
针对基于网络的凸多面体不确定离散时间马尔可夫跳变系统,研究其鲁棒无源控制问题.在网络诱导时滞是时变且有界的情况下,基于李雅普诺夫稳定性理论,通过构造参数依赖的随机李雅普诺夫泛函和运用广义系统变换,提出了不依赖模态的无源控制器存在的时滞依赖充分条件.所设计的鲁棒无源控制器保证了相应的闭环系统是鲁棒随机稳定且具有指定耗散率.将鲁棒无源控制器设计问题转化为一组线性矩阵不等式的可解性问题.仿真算例证明了本文方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号