首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在双连续介质理论框架下,采用匹配渐进展开方法导出并求解了具有蒸发液滴的汽雾流中层流边界层方程,给出了控制汽雾流的相似判据。对于沿曲面的流动,边界层方程的形式取决于是否存在液滴的惯性沉积。给出了热钝体驻点附近蒸汽-液滴边界层的数值计算结果。它们表明:由于蒸发,在边界层内近壁处形成了一个无液滴区域;在该区上边界处,液滴半径趋于零而液滴数密度急剧增高。液滴蒸发及聚集的联合效应造成了表面热流的显著增加,甚至在自由来流中液滴质量浓度很低时此效应依然存在。  相似文献   

2.
We study the two‐dimensional stationary Navier–Stokes equations describing flows around a rotating disk. The existence of unique solutions is established for any rotating speed, and qualitative effects of a large rotation are described precisely by exhibiting a boundary layer structure and an axisymmetrization of the flow.  相似文献   

3.
The rotating flow in the presence of a magnetic field is a problem belonging to hydromagnetics and deserves to be more widely studied than it has been to date. In the non‐linear regime the literature is scarce. We develop the governing equations for the unsteady hydromagnetic rotating flow of a fourth‐order fluid past a porous plate. The steady flow is governed by a boundary value problem in which the order of differential equations is more than the number of available boundary conditions. It is shown that by augmenting the boundary conditions based on asymptotic structures at infinity it is possible to obtain numerical solutions of the nonlinear hydromagnetic equations. Effects of uniform suction or blowing past the porous plate, exerted magnetic field and rotation on the flow phenomena, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviours of the Newtonian fluid and second‐, third‐ and fourth‐order non‐Newtonian fluids are compared for the special flow problem, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
This article has been retracted. See retraction notice DOI: 10.1002/mma.850 . An unsteady flow and heat transfer in a porous medium of a viscous incompressible fluid over a rotating disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The new self‐similar solution of the Navier–Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier–Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation‐point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large porosity or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also, the surface shear stress in the radial direction and the surface heat transfer decrease with increasing porosity, but the surface shear stress in the tangential direction increases. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.  相似文献   

6.
Summary In this work equations of boundary layers on arbitrary smooth surfaces are derived which are moving relatively slowly through a rotating fluid. For the case of the impulsive start of the motion from rest, the equations are solved exactly for arbitrary velocities at the outer edge of the boundary layer. The results are applied to the case of the motion of a sphere in the direction of the axis of revolution using Stewartson's velocity at the outer edge. The boundary layer calculated in such a way does not separate from the sphere surface; this makes it possible to calculate the total drag. The formula reduces for the case of non-viscous fluid to the known result given by Stewartson.  相似文献   

7.
This paper deals with the solutions of steady as well as unsteady three-dimensional incompressible thermal boundary layer equations and the study of the response of heat transfer when there is a parabolic flow over a moving flat plate. The components of velocity in boundary layer are discussed by Sarma and Gupta and those results are used to analyse thermal boundary layer equations. A general analysis is made from which we deduce (i) Solutions of two-dimensional thermal boundary layer on a moving flat plate, (ii) Solutions of thermal boundary layer on a yawed flat plate, (iii) Solutions of thermal boundary layer when there is a parabolic flow over a moving flat plate by giving different values to β and Cx. Solutions are developed for large and small times and curves are drawn representing the variations of heat transfer from the plate with time for all the cases. The limiting time is also calculated.  相似文献   

8.
Li  Ya Jun  Wang  Wen Dong 《数学学报(英文版)》2019,35(8):1402-1418
In this note we derive MHD boundary layer equations according to viscosity and resistivity coefficients. Especially, when these viscosity and resistivity coefficients are of different orders, it leads to degenerate MHD boundary layer equations. We prove these degenerate boundary layers are stable around a steady solution.  相似文献   

9.
The present study is concerned with unsteady natural convective boundary layer flow and heat transfer of fractional second-grade nanofuids for different particle shapes. Nonlinear boundary layer governing equations are formulated with time fractional derivatives in the momentum equation. The governing boundary layer equations of continuity, momentum and energy are reduced by dimensionless variable. Numerical solutions of the momentum and energy equations are obtained by the finite difference method combined with L1-algorithm. The quantites of physical interest are graphically presented and discussed in details. It is found that particle shape, fractional derivative parameter and the Grashof number have profound influences on the the flow and heat transfer.  相似文献   

10.
The object of this article is to study the boundary layer appearing at large Reynolds number (small viscosity ε) incompressible Navier Stokes Equation in a cylinder in space dimension three. These are Navier-Stokes equations linearized around a fixed velocity flow: the authors study the convergence as ε →0 to the inviscid type equations, the authors define the correctors needed to resolve the boundary layer and obtain convergence results valid up to the boundary and the authors also study the behavior of the boundary layer when, simultaneously, time and the Reynolds number tend to infinity, in which case the boundary layer tends to pervade the whole domain.  相似文献   

11.
The similarity solution for the unsteady laminar incompressible boundary layer flow of a viscous electrically conducting fluid in stagnation point region of an impulsively rotating and translating sphere with a magnetic field and a buoyancy force gives a system of non-linear partial differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the homotopy analysis method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the magnetic parameter, buoyancy parameter and rotation parameter on the surface shear stresses and surface heat transfer. It is noted that the behavior of the HAM solution for the surface shear stresses and surface heat transfer is in good agreement with the numerical solution given in reference [H. S. Takhar, A. J. Chamkha, G. Nath, Unsteady laminar MHD flow and heat transfer in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy forces, Heat Mass Transfer 37 (2001) 397].  相似文献   

12.
All possible continuum (hydrodynamic) models in the case of two-dimensional problems of supersonic and hypersonic flows around blunt bodies in the two-layer model (a viscous shock layer and shock-wave structure) over the whole range of Reynolds numbers, Re, from low values (free molecular and transitional flow conditions) up to high values (flow conditions with a thin leading shock wave, a boundary layer and an external inviscid flow in the shock layer) are obtained from the Navier-Stokes equations using an asymptotic analysis. In the case of low Reynolds numbers, the shock layer is considered but the structure of the shock wave is ignored. Together with the well-known models (a boundary layer, a viscous shock layer, a thin viscous shock layer, parabolized Navier-Stokes equations (the single-layer model) for high, moderate and low Re numbers, respectively), a new hydrodynamic model, which follows from the Navier-Stokes equations and reduces to the solution of the simplified (“local”) Stokes equations in a shock layer with vanishing inertial and pressure forces and boundary conditions on the unspecified free boundary (the shock wave) is found at Reynolds numbers, and a density ratio, k, up to and immediately after the leading shock wave, which tend to zero subject to the condition that (k/Re)1/2 → 0. Unlike in all the models which have been mentioned above, the solution of the problem of the flow around a body in this model gives the free molecular limit for the coefficients of friction, heat transfer and pressure. In particular, the Newtonian limit for the drag is thereby rigorously obtained from the Navier-Stokes equations. At the same time, the Knudsen number, which is governed by the thickness of the shock layer, which vanishes in this model, tends to zero, that is, the conditions for a continuum treatment are satisfied. The structure of the shock wave can be determined both using continuum as well as kinetic models after obtaining the solution in the viscous shock layer for the weak physicochemical processes in the shock wave structure itself. Otherwise, the problem of the shock wave structure and the equations of the viscous shock layer must be jointly solved. The equations for all the continuum models are written in Dorodnitsyn--Lees boundary layer variables, which enables one, prior to solving the problem, to obtain an approximate estimate of second-order effects in boundary-layer theory as a function of Re and the parameter k and to represent all the aerodynamic and thermal characteristic; in the form of a single dependence on Re over the whole range of its variation from zero to infinity.

An efficient numerical method of global iterations, previously developed for solving viscous shock-layer equations, can be used to solve problems of supersonic and hypersonic flows around the windward side of blunt bodies using a single hydrodynamic model of a viscous shock layer for all Re numbers, subject to the condition that the limit (k/Re)1/2 → 0 is satisfied in the case of small Re numbers. An aerodynamic and thermal calculation using different hydrodynamic models, corresponding to different ranges of variation Re (different types of flow) can thereby, in fact, be replaced by a single calculation using one model for the whole of the trajectory for the descent (entry) of space vehicles and natural cosmic bodies (meteoroids) into the atmosphere.  相似文献   


13.
In this work a long-wavelength asymptotic approach is used to analyze the region of absolute instability in the compressible rotating disk boundary layer flow. Theoretically determined values of branch points for the occurrence of absolute instability in the compressible flow are shown to match onto the ones which are obtained via a numerical solution of the linear inviscid compressible Rayleigh equations.  相似文献   

14.
In this paper, buckling and free vibration behavior of a piezoelectric rotating cylindrical carbon nanotube-reinforced (CNTRC) shell is investigated. Both cases of uniform distribution (UD) and FG distribution patterns of reinforcements are studied. The accuracy of the presented model is verified with previous studies and also with those obtained by Navier analytical method. The novelty of this study is investigating the effects of critical voltage and CNT reinforcement as well as satisfying various boundary conditions implemented on the piezoelectric rotating cylindrical CNTRC shell. The governing equations and boundary conditions have been developed using Hamilton's principle and are solved with the aid of Navier and generalized differential quadrature (GDQ) methods. In this research, the buckling phenomena in the piezoelectric rotating cylindrical CNTRC shell occur as the natural frequency is equal to zero. The results show that, various types of CNT reinforcement, length to radius ratio, external voltage, angular velocity, initial hoop tension and boundary conditions play important roles on critical voltage and natural frequency of piezoelectric rotating cylindrical CNTRC shell.  相似文献   

15.
Acta Mathematicae Applicatae Sinica, English Series - This paper deals with the boundary integral method to study the Navier-Stokes equations around a rotating obstacle. The detail of this method...  相似文献   

16.
This work presents nonsimilar boundary layer solutions for double-diffusion natural convection near a sphere with constant wall heat and mass fluxes in a micropolar fluid. A coordinate transformation is employed to transform the governing equations into nondimensional nonsimilar boundary layer equations and the obtained boundary layer equations are then solved by the cubic spline collocation method. Results for the local Nusselt number and the local Sherwood number are presented as functions of the vortex viscosity parameter, Schmidt number, buoyancy ratio, and Prandtl number. Higher vortex viscosity tends to retard the flow, and thus decreases the local convection heat and mass transfer coefficients, raising the wall temperature and concentration. Moreover, the local convection heat and mass transfer coefficients near a sphere in Newtonian fluids are higher than those in micropolar fluids.  相似文献   

17.
In this paper, the study the momentum and heat transfer characteristics in an incompressible electrically conducting non‐Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly nonlinear coupled ordinary differential equations by similarity transformations. The resultant coupled highly nonlinear ordinary differential equations are solved by means of, homotopy analysis method (HAM) for constructing an approximate solution of heat transfer in magnetohydrodynamic (MHD) viscoelastic boundary layer flow over a stretching sheet with non‐uniform heat source. The proposed method is a strong and easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The HAM solutions contain an auxiry parameter, which provides a convenient way of controlling the convergence region of series solutions. The results obtained here reveal that the proposed method is very effective and simple for solving nonlinear evolution equations. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
In this present article an analysis is carried out to study the boundary layer flow behavior and heat transfer characteristics in Walter’s liquid B fluid flow. The stretching sheet is assumed to be impermeable, the effects of viscous dissipation, non-uniform heat source/sink in the presence and in the absence of elastic deformation (which was escaped from attention of researchers while formulating the viscoelastic boundary layer flow problems)on heat transfer are addressed. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. Analytical solutions are obtained for the resulting boundary value problems. The effects of viscous dissipation, Prandtl number, Eckert number and non-uniform heat source/sink on heat transfer (in the presence and in the absence of elastic deformation) are shown in several plots and discussed. Analytical expressions for the wall frictional drag coefficient, non-dimensional wall temperature gradient and non-dimensional wall temperature are obtained and are tabulated for various values of the governing parameters. The present study reveals that, the presence of work done by deformation in the energy equation yields an augment in the fluid’s temperature.  相似文献   

19.
The effect of an electric field is investigated for heat transfer properties in a laminar, incompressible, non-isothermal boundary layer gas flow over a wedge. The governing boundary layer equations are reduced to an ordinary differential equation system using similarity transformations. The reduced equations are solved numerically for different values of electric and flow field parameters characterizing the ratio of electric force to fluid inertia force, Joule heating and ion kinetic work. For specific electric field function forms, leading to similarity solutions, velocity boundary layers are observed to become thinner and heat transfer properties are shown to be enhanced near the wall. The level of enhancement is controlled by the electric body force with additional effects of Joule heating and ion kinetic work on the bulk flow. The effects of low and high Prandtl numbers are also demonstrated. Heat transfer enhancement is observed to increase with increasing Prandtl number.  相似文献   

20.
The non axisymmetric motion produced by a buoyancy-induced secondary flow of a viscoelastic fluid over an infinite rotating disk in a verticalplane with a magnetic field applied normal to the disk has been studied.The governing Navier Stokes equations and the energy equation admit a self similar solution. The system of ordinary differential equations has been solved numerically using Runge-Kutta Gill subroutine.The turning moment for the viscoelastic fluid is found to be less than that of the Newtonian fluid but the turning moment is increased due to the magnetic parameter. The resultant force due to the buoyancy-induced secondary flow increases with the magnetic parameter but reduces as the viscoelastic parameter increases. The quantity of fluid, which is pumped outwards due to the centrifuging action of the disk, for the viscoelastic fluid is more than that of the Newtonian fluid. The buoyancy-induced secondary flow boundary layer is much thicker than the primary boundary layer thickness. The thermal boundary layer due to the primary flow increases with the magnetic parameter decreases as the viscoelastic parameter increases. The heat transfer increases with the viscoelastic parameter but decreases as the magnetic parameter increases. The effect of the viscoelastic parameter is more pronounced on the secondary flow than on the primary flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号