首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple electrothermal atomic absorption spectrometric (ETAAS) method is described for direct determination of arsenic in sugar beet molasses samples. Pyrolytic graphite tubes were used as atomizers. The compression between modifiers such as nickel nitrate, palladium nitrate and the mixture of palladium and magnesium nitrate were performed and nickel nitrate selected as the best chemical modifier. The effects of pyrolysis and atomization temperature were also studied and the pyrolysis temperature of 900 °C and atomization temperature of 2300 °C have been chosen for temperature program. The detection limit of the method was 1 ng/mL As in sugar beet molasses samples. The relative standard deviation for ten determination of a spiked sample with concentration of 50 ng/mL As was 2.4%. The accuracy of the method was confirmed by the analysis of spiked samples. The linear rang of calibration is in the range of 1‐100 ng/mL of arsenic.  相似文献   

2.
The copper(II), nickel(II) and palladium(II) chelates of the bridged β-ketoamine, bis(acetylpivalylmethane) ethylenediimine, are described. The copper and nickel complexes are readily extracted by cyclohexane at pH 8.0 from aqueous solution. The gas chromatographic separation of the copper and palladium, the nickel and palladium, and the copper and nickel chelates is reported on a silicone gum rubber phase (E-350) supported on Universal B at 285°C. Optimal conditions for the complete separation of copper and nickel are reported; the solvent extraction—gas chromatographic procedures are applied to the determination of the individual metal ions (limit of detection, 1 ng) and to the simultaneous determination of copper and nickel in solution and in alloy samples. A rapid method for the determination of copper in domestic water samples is also described.  相似文献   

3.
The possibility of the sequential determination of nickel with dimethylglyoxime and zirconium with arsenazo III from a single aliquot portion using polyacrylonitrile fiber as a solid phase impregnated with a KU-2 cation exchanger is studied. Conditions for the simultaneous adsorption of nickel and zirconium in the dynamic mode from 0.01 M HNO3 are found as along with the ones for their sequential determination on one disc. The calibration functions are linear in the range 5–50 ng/mL, the detection limits for both elements are 2 ng/mL. In their simultaneous presence, the determination of nickel and zirconium is not affected by 10-fold weight amounts of Fe(III), Cu(II), Co(II), Al, Mn(II), Pb, Zn, Cd, Cr(VI), Mo(VI), and V(V). A method is proposed for determining nickel and zirconium from a single aliquot portion on a single substrate disc at their ratios from 1: 1 to a 5-fold excess of each element.  相似文献   

4.
At pH 9.5 nickel reacts with 2-(6-bromo-2-benzothiazolylazo)-5 diethylamino-phenol (Br-BTAE) in the presence of Tween-80 and sodium lauryl sulfate to form a red-violet complex which has an absorption maximum at 540 nm (e 2.5X10^5). Though this is also the absorption maximum of the reagent, yet the reagent will readily decompose at 40-50`C within 20 min. The reagent blank is low and the error is negligible. Beer's law is obeyed for 0.01-0.125 \mγ nickel in a 1mL solution. The composition of the complex was found to be Ni/Br-BTAE=1:2 by the continuous-variation method. This method can be applied to the determination of nickel in electroplating waste-water and in copper-aluminium alloy and steel samples after extraction with dimethylglyoxime. The results of the analysis agree with that from AAS and dimethylglyoxime method  相似文献   

5.
A simple and highly selective method was developed for the routine determination of trace or ultratrace amounts of gold and palladium in geological and metallurgical samples. The method uses flow injection on-line preconcentration and separation with determination by flame atomic absorption spectrometry. Au and Pd in the sample are adsorbed on a 2-mercaptopyrimidine chemically modified silica gel (MPMSG) packed microcolumn in a 0.50M HCl medium and then eluted with 0.5 or 1.0% thiourea solution. The eluates are introduced into the flame atomic absorption spectrometer directly. With the use of a 0.85 mL microcolumn (about 0.14 g MPMSG packed), the present system tolerated concentrations of common base metal ions up to 25.0 mg/mL and concentrations of anions up to 100.0 mg/mL when Au(III) at 0.100 microg/mL and Pd(II) at 0.200 microg/mL were preconcentrated for 60 s with a sample flow rate of 5.0 mL/min. The limits of detection were 3.1 ng/mL for Au(III) and 6.1 ng/mL for Pd(II) with relative standard deviations of < or = 2.5%. The analytical results obtained by the proposed method for geological and metallurgical samples were in good agreement with the certified values.  相似文献   

6.
Khasnis DV  Shinde VM 《Talanta》1979,26(7):593-595
A procedure is described for the extractive spectrophotometric determination of nickel and palladium with quinoline-2-aldehyde thiosemicarbazone. At pH 7.5 nickel forms a 1:2 complex which is soluble in chloroform and has an absorption maximum at 460 nm. Palladium forms a 1:2 complex with maximum absorbance at 510 nm which can be extracted into MIBK from 1M HCl. Both complexes are stable and conform to Beer's law. The molar absorptivities for nickel and palladium are 1.58 x 10(4) and 2.6 x 10(3) 1.mole(-1). cm(-1) respectively. The proposed method is suitable for detection and determination of nickel and palladium in the presence of associated metal ions. The results of the analysis of synthetic mixtures and standard samples are reported.  相似文献   

7.
A catalytic-spectrophotometric method for the determination of traces of palladium(II) is proposed. The reaction is based on the catalytic action of palladium(II) on the reduction of azure I (λmax = 647 nm) by sodium hypophosphite. The various variables affecting the sensitivity were studied, and a study of interfering ions was also carried out. The reaction gave a detection limit of 4.3 ng/mL palladium(II) and good reproducibility with a relative standard deviation of 1.53–1.98% in the palladium(II) concentration range 40–200 ng/mL. The method yielded another linear range (5–40 ng/mL) when using slightly different conditions. In this case, the detection limit was 0.78 ng/mL palladium(II), and the relative standard deviation for ten replicate analyses of 20 ng/mL palladium(II) was 2.05%. The method was applied to the determination of palladium in a sample of activated charcoal. The text was submitted by the authors in English.  相似文献   

8.
A new sensitive and selective chromogenic reagent, 1-azobenzene-3-(3-hydroxyl-2-pyridyl)-triazene (ABHPT), was synthesized. It has been found that ABHPT reacts with nickel(II) in a borax buffer solution (pH 10.0) to form 2: 1 red complexes with the maximum absorption at 530 nm. The apparent molar absorptivity of the complex is 2.6 × 105 L/(mol cm). Most metal ions can be tolerated in considerable amounts, whereby only zinc and mercury may interfere with the determination of nickel(II). Nevertheless, this can be easily eliminated by prior separation with sulfhydryl dextran gel. A new method for the spectrophotometric determination of trace nickel(II) was developed. Beer’s law is obeyed for 0–15 μg of nickel(II) in 25 mL of solution. The limit of quantification, limit of detection, and relative standard deviation are 0.74 ng/mL, 0.25 ng/mL, and 1.0%, respectively. The method has been applied to the determination of trace nickel(II) in biological samples with satisfactory results. The text was submitted by the authors in English.  相似文献   

9.
张小玲  阎宏涛 《中国化学》2002,20(10):1055-1059
A selective and sensitive method for determination of platinum and palladium(Ⅱ)in an aqueous solution simultaneously by laser thermal lens spectrometry,based on the complex reaction of 2-(3,5-dichloropyridylazo)-5-dimethylaminoamiline(3,5-diCl-PADMA) with platinum and palladium,has been developed.It is shown that the palladium complex can be fromed at room temperature, while the platinum complex can be only formed after being heated in a boiling water bath.By using this difference of reaction temperature and the characteristic of the complexes mentioned above,the method for simultaneous determination of platinum and palladium was established in an aqueous solution without a pre-separation.The results show that the dynamic linear ranges of determination for platinum and palladium are 0.005-0.04μg/mL and 0.005-0.25μg/mL respectively,and that the detection limits are both 0.002/μg/mL.The method has been applied to the determination of platinum and palladium simultaneously in alloy and catalyst samples with satisfactory results.  相似文献   

10.
Eskandari H 《Annali di chimica》2004,94(7-8):591-599
1-(2-Pyridylazo)-2-naphthol (PAN) has been used for the simultaneous determination of nickel and palladium at trace levels. PAN complexes of nickel and palladium in the pH 1.98 form red and green colored complexes, respectively, which are soluble in aqueous 4:1 Triton X-100 to sodium dodecylsulfate (SDS) micellar media with total detergent concentration of 3.2%. Under optimum conditions, calibration graphs for the simultaneous determination by second derivative spectrophotometry were obtained. Zero crossing second derivative spectrophotometry at 668 and 572 nm, respectively for palladium and nickel was used for the simultaneous determination. The method is able to determine palladium to nickel ratio 70:1 to 1:6 (Wt/Wt), accurately. Accuracy and reproducibility of the determination method on the known various amounts of palladium and nickel in their binary mixtures were tested. Effects of diverse ions on the determination of palladium and nickel to investigate selectivity of the method also were studied.  相似文献   

11.
An RP-HPLC method for the separation and determination of aluminium(III), vanadium(V), iron(III), copper(II) and nickel(II) with CALKS (Chromazol KS) and PAR ([4-(2-pyridylazo)resorcinol]) chelating on a YWG-ODS column was developed. A mixture of methanol-tetrahydrofuran(THF)-water (60:5:35 v/v) containing 0.2 mol/L LiCl, 5 x 10(-5) mol/L CALKS, 5 x 10(-5) mol/L PAR and acetate buffer solution (pH 4.9) was selected as mobile phase. The method has high sensitivity, with the detection limits being 6 ng/mL for aluminium(III), 3.5 ng/mL for vanadium(V), 10.4 ng/mL for iron(III), 6.3 ng/mL for copper(II) and 8.7 ng/mL for nickel(II). It also has good selectivity, so that most foreign metal ions do not interfere under the optimum conditions. The method can be applied to the simultaneous determination of trace amounts of aluminium, vanadium, iron, copper and nickel in rice and flour samples.  相似文献   

12.
Nickel (II) and cobalt (II) are determined by constant-current stripping analysis, with mercury- coated carbon fibre electrodes, in non-deoxygenated solutions after potentiostatic adsorptive accumulation of their dimethylglyoxime complexes. By adding several stripping scans, each obtained after a short period of potentiostatic deposition, instead of a single scan obtained after the same total time of potentiostatic adsorption, the linear range between the analytical signal and the analyte concentration can be extended. By using pulsed-potential procedures for adsorptive accumulation, cobalt (II) can be determined in the presence of a larger amount of nickel (II) and vice versa. Carbon fibre electrodes were modified by sucking ethanolic solutions of either dimethylglyoxime (of Nafion and dimethylglyoxime) through the electrodes; Nafion did not affect the general behaviour of this electrode. The background of the modified electrodes was lower than that of the unmodified electrodes. The accuracy of the method was confirmed by analysis of sea- water reference samples. The detection limit for nickel (II) was about 40 ng l?1 for a total potentiostatic deposition time of 100 s (5×20 s); the reagent blank was about 150 ng l?1 under these conditions.  相似文献   

13.
A procedure was developed for the extraction and preconcentration of nickel as its dimethylglyoxime complex using triethylamine. Triethylamine on exposure to CO2 changes its hydrophilicity and converts into a polar water-miscible form. The separation of the extractant was achieved by adding a concentrated alkaline solution to the extraction mixture. The nickel-enriched triethylamine extract was separated and evaporated, the residue was dissolved in chloroform (50 μL), and absorbance at 380 nm was measured. Conditions for the determination of nickel (pH of the medium, concentrations of dimethylglyoxime and NaOH, type and volume of dispersive solvent, ultrasonic exposure, stirring time) were optimized. A procedure for the spectrophotometric determination of nickel with a limit of detection of 0.020 μg/mL (n = 10; P = 0.95) was developed. The linearity range was from 0.050 to 0.60 μg/mL. Most of nickel-related ions (Fe3+, Fe2+, Co2+, Cu2+, Zn2+, Cd2+, Pb2+, Hg2+) do not interfere with its determination. The procedure was applied to the analysis of water samples.  相似文献   

14.
A spectrophotometric method for the determination of trace amounts of cobalt(II), nickel(II), and copper(II) after the adsorption of their 2-aminocyclopentene-1-dithiocarboxylate complexes on microcrystalline naphthalene has been developed. These complexes are adsorbed on microcrystalline naphthalene at pH 4.5 by shaking for 5 min. The formed solid mass is separated by filtration, and dissolved in dimethylformamide. The absorption spectra were processed using the partial least-squares multivarate calibration method for the analysis of a ternary mixture of Co(II), Ni(II), and Cu(II). The detection limits for Co(II), Ni(II), and Cu(II) were 3.3, 10.0, and 0.8 ng/mL, respectively. The total relative standard error for applying the method to 20 synthetic samples in the concentration ranges of 20–400 ng/mL Co(II), 60–400 ng/mL Ni(II), and 4–400 ng/mL Cu(II) was 1.53%. The proposed method was also successfully applied to the determination of Co(II), Ni(II), and Cu(II) in alloys. The text was submitted by the authors in English.  相似文献   

15.
In this article, a sensitive cloud point extraction procedure for the preconcentration of trace amounts of palladium, gold and nickel prior to their determination by flame atomic absorption spectrometry has been developed. The cloud point extraction method is based on the complexation of Pd(II), Au(II), and Ni(II) ions with 1-(2-pyridylazo)-2-naphthol and entrapping in non-ionic surfactant Triton X-114. The main factors affecting cloud point extraction efficiency, such as pH of sample solution, concentration of 1-(2-pyridylazo)-2-naphthol and Triton X-114, equilibration temperature and time, were investigated in detail. Under the optimized conditions, calibration curves were constructed for the determination of palladium, gold and nickel according to the general procedure. Linearity was maintained from 0.01 to 1.0 μg/mL for palladium, 10.0 μg/mL to 1.5 μg/mL for gold, and 10.0 μg/mL to 0.5 μg/mL for nickel. Detection limits based on three times the standard deviation of the blank divided by the slope of analytical curve (3Sb/m) for Pd(II), Au(III), and Ni(11) ions were 3.4, 3.9, and 2.4 μg/mL, respectively. Seven replicate determination of a mixture of 0.5 μg/mL palladium and gold and 0.2 μg/mL nickel gave a mean absorbance of 0.174, 0.150, and 0.201 with relative standard deviation ±1.5, ±1.3, and ±1.8%, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of palladium, gold and nickel in certified reference material and water samples with satisfactory results.  相似文献   

16.
A microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1-(2-pyridylazo)-2-naphthol (PAN) was prepared for the preconcentration of trace nickel from water samples for a flame atomic absorption spectrometry (FAAS) determination. Under optimized conditions (pH = 4.0; flow rate, 5 mL min–1) nickel (II) was retained on the column. The nickel collected on the column was eluted with 5 mL of 0.5 M nitric acid. Recovery was greater than 96.7%. A concentration factor of 300 can be achieved by passing 1500 mL of sample through the microcolumn. The relative standard deviation (ten replicate analyses) at the 40 ng mL–1 level for nickel was 2.4%, and the corresponding limit of detection (based on 3) was 0.06 ng mL–1. The method was applied to the determination of Ni in waste and mineral waters.  相似文献   

17.
Xu Q  Wang M  Yu S  Tao Q  Tang M 《The Analyst》2011,136(23):5030-5037
A simple, rapid and sensitive method for the determination of diethylstilbestrol (DES), dienestrol (DE) and hexestrol (HEX) was developed by using the Nylon 6 nanofibers mat-based solid-phase extraction (SPE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS). These estrogens were separated within 8 min by LC using an ODS column and methanol/water (80/20, v/v) at a flow rate of 1.0 mL min(-1). Electrospray ionization conditions in the negative ion mode were optimized for MS detection of the estrogens. Under the optimum SPE conditions, all target analytes in 50 mL environmental water samples can be completely extracted by 1.5 mg Nylon 6 nanofibers mat at flow rate of 3.0 mL min(-1) and easily eluted by passage of 500 μL mobile phase. By using the novel SPE-LC/MS method, good linearity of the calibration curve (r(2) ≥ 0.9992) was obtained in the concentration range from 0.10 ng L(-1) to 1.0 mg L(-1) (except for DE which was 0.20 ng L(-1) to 1.0 mg L(-1)) for all analytes examined. The limits of detection (S/N = 3) of the three estrogens ranged from 0.05 ng L(-1) to 0.10 ng L(-1). This method was applied successfully to the analysis of environmental water samples without any other pretreatment and interference peaks. Several water samples were collected from Jinchuan River and Xuanwu Lake, and in Jinchuan River water DES was detected at 0.13 ng L(-1). The recoveries of estrogens spiked into tap water were above 98.2%, and the relative standard deviations were below 4.78%.  相似文献   

18.
This work assesses the potential of natural analcime zeolite as a sorbent for the preconcentration of palladium. Palladium is quantitatively retained on modified analcime zeolite loaded with zincon using the column method in the pH range from 2.5 to 3.5 at a flow rate of 1 mL/min. The palladium complex was removed from the column with 5.0 mL of dimethylsulfoxide (DMSO) and determined by third-derivative spectrophotometry. The detection limit is 0.03 μg/mL (signal-to-noise ratio = 3) in the final solution. Since it is possible to retain 0.15 μg of palladium from 600 mL of solution passing through the column, elution with 5.0 mL of DMSO gives a detection limit of 0.25 ng/mL for palladium in the initial aqueous solution. The calibration curve is linear over the range 0.1 to 5.0 μg/mL of palladium(II) in the final solution with a correlation coefficient of 0.9996. Seven replicated determinations of 5.0 μg of palladium in 5.0 mL dimethylsulfoxide gave a mean d 3 A/dλ3 (peak-to-peak signal between λ2 = 625 and λ1 = 654 nm) of 0.64 with a relative standard deviation of 1.2%. The sensitivity of the method (d 3 A/dλ3) is 0.5843 mL/μg of palladium(II) from the slope of the calibration curve. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the determination of trace palladium in various synthetic and water samples. The text was submitted by the authors in English.  相似文献   

19.
A new and simple analytical method using HPLC with fluorescence detection was developed for the simultaneous determination of four lignans (phyllanthin, hypophyllanthin, phyltetralin and niranthin) in Phyllanthus niruri L. plant samples. Optimal separation was achieved with an isocratic mobile phase consisting of acetonitrile-water (55:45 v/v). The method recorded limits of detection (S/N=5) for phyllanthin at 0.61 ng/mL, hypophyllanthin at 6.02 ng/mL, phyltetralin at 0.61 ng/mL and niranthin at 1.22 ng/mL, being 80, 8, 80 and 40 times, respectively, lower when compared with those derived using HPLC-UV detection. The limits of quantification (S/N=12) were 4.88 ng/mL for phyllanthin and phyltetralin, 9.76 ng/mL for niranthin and 24.4 ng/mL for hypophyllanthin showing 40, 8 and 20 times, respectively, lower than those from the UV detection method. The within-day and between-day accuracy for the four lignans were between 98.1% and 102.9% while their precision values were below 2.2%. The mean recovery was between 92.5% and 110.1%. The method was then successfully applied for the quantification of lignans in P. niruri plant samples. The highest amount of lignans was found in the leaves followed by fruits, branches and stem, whilst the roots have the least amount of lignans.  相似文献   

20.
A sensitive and accurate method is described for the determination of ultra-trace nickel in environmental samples with in-situ trapping of volatile species in iridium-palladium coated graphite furnace atomic absorption spectrometry. The effects of the conditions for the generation and collection of volatile nickel species, such as medium acidity, potassium borohydride concentration, enhancement reagent concentration, reaction temperature, as well as graphite tube coating, carrier gas flow rate and trapping time were investigated. Phenanthroline was selected as the enhancement reagent due to its good enhancing effect, and iridium–palladium coating was used for the in-situ trapping of volatile nickel species at 300°C. Under the optimal conditions, the calibration curve was linear from 0.21 up to 30.0 ng mL?1 with correlation coefficient of 0.9991, the detection limit (S/N = 3) was 0.21 ng mL?1 for 4 mL sample volumes and the relative standard deviation for 11 determinations of Ni at 10 ng mL?1 was 3.5%. The results found by the proposed methods are accordant with the certified values of water, soil and tea certified reference materials. The proposed methods have been applied for the determination of ultra-trace Ni in tap, river and wastewater, as well as rice and soil samples, with recoveries ranging from 97.3 to 100.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号