首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A rapid,sensitive,and accurate method based on LC/MS/MS was developed and validated for the determination of domperidone in human plasma.Domperidone and internal standard,tramadol,were extracted from plasma with diethyl ether-dichloromethane(60∶40,volume ratio)and separated by reversed-phase HPLC with methanol-water-ammonia solution(80∶20∶0.2,volume ratio)as the mobile phase.Detection was carried out via multiple-reaction monitoring(MRM)on a Q-trapTM LC/MS/MS system(Q-trapTM).The assay result was linear over a concentration range of 0.1-30 ng/mL with a limit of quantitation(LOQ)of 0.1 ng/mL.The inter-and intra-day precision levels were within 7.52% and 12.9%,respectively,whereas the accuracy was within a range of 87.3%-114%.This method has been successfully applied to evaluate the pharmacokinetics of domperidone in Chinese healthy volunteers given an oral dose of 10 mg.  相似文献   

2.
A rapid and sensitive liquid chromatography-tandem mass spectrometry(LC-MS/MS) method for the de- termination of cefotetan in human plasma was developed and validated. After the protein precipitation of sample with acetonitrile, the analyte and internal standard(IS), tramadol, were separated on a Zorbax XDB C8 column using ace- tonitrile/1%(volume fraction) formic acid(volume ratio 35:65, pH=2.5) as mobile phase at a flow rate of 1.0 mL/min with a 1 : 1 split. The detection was performed by electrospray ionization with positive ion mode, followed by multiple reaction monitoring of the transitions for cefotetan at m/z 576.3→460.2(quantifier) and m/z 576.3→432.2(qualifier) and for IS at m/z 264.1→58.1. Cefotetan and IS were eluted at 1.86 and 1.87 rain, respectively. The assay was linear over the concentration range of 0.1-100 gg/mL for 20 μL of human plasma only with intra- and inter-day preci- sions(expressed as the relative standard deviation) of less than 6.62% and accuracies(as relative error) of +1.31%. The method was applied to the pharmacokinetic study of a l-h intravenous infusion of 1.0 g of cefotetan disodium for human volunteers(n=6).  相似文献   

3.
Astilbin is a potential immunosuppressive agent with minor cytotoxicity. Its oral bioavailability is supposed to be rather low and therefore a sensitive analytical method is required for its pharmacokinetic study after oral administration. A simple, sensitive and rapid liquid chromatography-tandem mass spectrometry(LC-MS/MS) method was developed and validated for the determination of astilbin in rat plasma. Plasma samples were subjected to liquid-liquid extraction with ethyl acetate and separated by reversed phase high performance liquid chromatography(HPLC) with methanol-0.01%(volume fraction) formic acid(50:50, volume ratio) as mobile phase. Quantitive determination was achieved on negative LC-MS/MS by a multiple reaction moitoring method with transitions m/z 449.1→150.9(quantifier) and m/z 449.1→284.9(qualifier) for astilbin and m/z 128.9→42.0 for internal standard(IS). A lower limit of quantification(LLOQ) of ng/mL was achieved within a short cycle time of 3.4 min. The method was successfully applied to a pharmacokinetic study involving oral and intravenous administrations of 6 mg/kg astilbin to six rats.  相似文献   

4.
A rapid detection method for insulin aspart in human plasma was established by using liquid chromatography-quadrupole electrostatic field orbitrap high-resolution mass spectrometry. Samples were pretreated with a precipitant of methanol-acetonitrile-acetic acid solution (49:49:2, V/V/V), an Agilent Eclipse Plus C18 column (50 mm×2.1 mm, 3.5 µm) was selected, with 0.1% aqueous formic acid and 0.1% formic acid[1]acetonitrile as mobile phases for gradient elution, and mass spectrometry was performed in selected ions monitoring (SIM) scan mode. The experimental results showed that the linear relationship of insulin aspart in human plasma was good in the range of 0.1-10 µg/mL (R2=0.9938), with the limit of quantification of 0.1 µg/mL, and the limit of detection of 0.05 µg/mL. The recoveries ranged from 71.6% to 106.2%, and the relative standard deviations (RSDs) of the intra-day and inter-day were both less than 15%. The method can meet the inspection needs of actual cases. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

5.
A simple, rapid and sensitive liquid chromatography-tandem mass spectrometry(LC-MS/MS) for the determination of glycyrrhetic acid in human plasma with ginsenoside Rh2 as internal standard was developed and validated. The plasma samples were prepared via liquid-liquid extraction with ethyl acetate. Chromatographic separation was accomplished on a Venusil MP-C18(50 mm×2.1 mm, 5 μm i.d.) column at 25 °C. The mobile phase consisted of acetonitrile/5 mmol?L-1 ammonium acetate(10:90, volume ratio) at a flow rate ...  相似文献   

6.
LC-ESI-MS Determination of Bilobalide and Ginkgolides in Canine Plasma   总被引:1,自引:0,他引:1  
A sensitive and selective method using liquid chromatography with electrospray ionization mass spectrometric detection was developed for the quantification of bilobalide and ginkgolides in canine plasma. The analytes were extracted with diethyl ether-dichloromethane-isopropanol (6:3:1, v/v) after spiking the samples with daidzein (internal standard). The lower limit of quantification (LLOQ) of the method was 2.5 μg L−1 for ginkgolide B and 10.0 μg L−1 for bilabolide, ginkgolide A and ginkgolide C. The accuracy of the method was within 15% of the actual values over a wide range of plasma concentrations. The intra-day and inter-day precision was better than 15% (R.S.D.). Finally, the LC-ESI-MS method was successfully applied to study the pharmacokinetics of ginkgolides and bilabolide after administration of Ginkgo biloba extracts to dogs.  相似文献   

7.
A method for the simultaneous determination of 17 phenolic compounds in infant textile products, including phenol,o-phenylphenol,alkylphenols and bisphenols,was established using gas chromatography-mass spectrometry(GC-MS). The samples were extracted by 0.1 mol/L KOH solution,derived with acetic anhydride. The derivatives were extracted with ethyl acetate,separated by HP-5MS column,and determined by gas chromatography-mass spectrometry with ion mode scanning. Under the optimized conditions,the method had a good linear relationship in the range of 0.5-6.25 mg/L(R2>0.9990),the recoveries ranged from 80% to 110%, the relative standard deviations were 1.0%-8.6%,and the limit of quantification was 1.0 mg/kg. The method can achieve the simultaneous detection of 17 phenolic compounds in infant textile products. © 2023, Youke Publishing Co., Ltd. All rights reserved.  相似文献   

8.
The non-edible oils are believed to be one of the major feedstock for the production of biodiesel in future.In the present study,we investigated the production of Jatropha oil methyl esters(JOMEs) via alkali-catalyzed transesterification route.The biophysical characteristics of Jatropha oil were found within the optimal range in accordance with ASTM standards as a substitute diesel fuel.The chemical composition and production yield of as-synthesized biodiesel were confirmed by various analytical techniques such as FT-IR,1H NMR,13 C NMR and gas chromatography coupled with mass spectrometry.A high percentage conversion,~96.09%,of fatty acids into esters was achieved under optimized transesterification conditions with 6 :1 oil to methanol ratio and 0.9 wt% Na OH for 50 min at ~60°C.Moreover,twelve fatty acids methyl esters(FAME) were quantified in the GC/MS analysis and it was interesting to note that the mass fragmentation pattern of saturated,monounsaturated and diunsaturated FAME was comparable with the literature reported values.  相似文献   

9.
A high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS)method was developed for the determination of perfluorooctane sulfonic acid (PFOS)in cosmetics. The cosmetic samples were extracted with methanol by ultrasonication,and PFOS was quantified by HPLC-MS/MS. The samples were detected in negative multiple reaction monitoring(MRM)mode using an Agilent Poroshell 120 EC-C18 (100 mm× 2.1 mm,2.7 µμm)column with a gradient elution using 0.1% formic acid aqueous solution(A)-methanol(B)as the mobile phase. The results showed that the linearity of PFOS was good in the range of 1-100 µμg/L with the correlation coefficient r2 larger than 0.9998;the limits of detection and limits of quantification were 0.015 and 0.050 mg/kg,respectively. The average recoveries were 98.7%-112.5%,and the relative standard deviations (RSDs)were less than 5%. The method is suitable for the determination of PFOS in cosmetics. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

10.
Exenatide(synthetic exendin-4), which has been approved by the Food and Drug Administration(FDA) for the adjunctive treatment of patients with type 2 diabetes, is an incretin mimetic agent. The development and validation of a RP-HPLC method for the quantification of the exenatide in poly(lactic-co-glycolic acid)(PLGA) microspheres is described. Separation was performed on a C4 column via a mobile phase consisting of ACN:KH2PO4(0.02 mol/L, pH=2.5) gradient elution from 30:70 to 45:55(volume ratio) in 30 min. Multi-diode array detection(DAD) appears to be most appropriate to evaluate the spectral purity of exenatide. The limits of detection and quantification of exenatide were 0.4 and 1.2 μg/mL, respectively. The calibration curve of exenatide was linear in a range of 0.025―0.2 mg/mL with a correlation coefficient of 0.9995. The results of validation study show that this method is specific, accurate(recovery95%), precise(RSD2.0%) and robust.  相似文献   

11.
A rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of fexofenadine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 1-500 ng/mL for fexofenadine in human plasma. The lower limit of quantification was 1 ng/mL with a relative standard deviation of less than 5% for fexofenadine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

12.
To support the pharmacokinetic and bioavailability study of a once-daily fexofenadine/pseudoephedrine combination, a high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (HPLC/ESI-MS/MS) method for the simultaneous quantification of fexofenadine and pseudoephedrine was developed and validated with 500 microL human plasma using mosapride as an internal standard (IS). Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 502/466 for fexofenadine, m/z 166/148 for pseuoephedrine and m/z 422/198 for the IS. The method exhibited linear dynamic ranges of 1-500 ng/mL and 2-1000 ng/mL for fexofenadine and pseudoephedrine, respectively, in human plasma. The lower limits of quantification were 1 and 2 ng/mL with a relative standard deviation of less than 10% for fexofenadine and pseudoephedrine, respectively. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time was 2 min and more than 400 human plasma samples could be analyzed in one day by running the system overnight. The method is precise and sensitive enough for its intended purpose.  相似文献   

13.
A simple, accurate, precise and sensitive HPLC-UV method was developed for the determination of secnidazole in human plasma. Secnidazole and tinidazole (IS) were extracted from 0.2 mL of human plasma by ethyl acetate. Secnidazole was then separated by HPLC on a Diamond C(18) column and quantified by ultraviolet detection at 319 nm. The mobile phase consisted of acetonitrile-aqueous 5 mm sodium acetate (30:70, v/v) containing of 0.1% acetic acid adjusted to pH 4.0, and the flow rate was 1.0 mL/min. The low limit of quantification was 0.1 microg/mL. The method was linear over the concentration range 0.1-25.0 microg/mL (R(2) = 1.000). The recovery of secnidazole from human plasma ranged from 76.5 to 89.1%. Inter- and intra-assay precision ranged from 3.3 to 10.7%. Secnidazole in plasma was stable when stored at ambient temperature for 8 h, at -20 degrees C for 2 weeks and at -20 degrees C for three freeze-thaw cycles. The developed method was successfully applied to the pharmacokinetic and bioequivalence studies between test and reference secnidazole tablets following a single 500 mg oral dosage to 20 healthy volunteers of both genders. Pharmacokinetics parameters T(max), C(max), AUC(0-)t, AUC(0-infinity), T(1/2) were determined of both preparations. The analysis of variance (ANOVA) did not show any significant difference between the two preparations and 90% confidence intervals fell within the acceptable range for bioequivalence. It was concluded that the two secnidazole preparations are bioequivalence and may be used interchangeably.  相似文献   

14.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A simple method using a one-step liquid-liquid extraction (LLE) followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of bromazepam in human plasma, using lorazepam as internal standard. The acquisition was performed in the multiple reaction monitoring mode, monitoring the transitions: m/z 316 > 182 for bromazepam and m/z 321 > 275 for lorazepam. The method was linear over the studied range (1-100 ng ml(-1)), with r(2) > 0.98, and the run time was 2.5 min. The intra- and inter-assay precisions were 2.7-14.6 and 4.1-17.3%, respectively and the intra- and inter-assay accuracies were 87-111 and 75.8-109.5%, respectively. The mean recovery was 73.7%, ranging from 64.5 to 79.7%. The limit of quantification was 1 ng ml(-1). At this concentration the mean intra- and inter-assay precisions were 14.6 and 7.1%, respectively, and the mean intra- and inter-assay accuracies were 102.5 and 104%, respectively. Bromazepam stability was evaluated and the results showed that the drug is stable in standard solution and in plasma samples under typical storage and processing conditions. The method was applied to a bioequivalence study in which 27 healthy adult volunteers (14 men) received single oral doses (6 mg) of reference and test bromazepam formulations, in an open, two-period, randomized, crossover protocol. The 90% confidence interval of the individual ratios (test formulation/reference formulation) for C(max) (peak plasma concentration), AUC(0-96) and AUC(0-inf) (area under the plasma concentration versus time curve from time zero to 96 h and to infinity, respectively) were within the range 80-125%, which supports the conclusion that the test formulation is bioequivalent to the reference formulation regarding the rate and extent of bromazepam absorption.  相似文献   

16.
A simple, sensitive and selective LC-MS-MS method has been developed for the quantification of huperzine A in human plasma. Huperzine A and pseudoephedrine hydrochloride (internal standard) were isolated from human plasma by extraction with ethyl acetate, chromatographed on a C(18) column with a mobile phase consisting of 0.2% formic acid-methanol (15:85, v/v) and detected using a tandem mass spectrometer with an electrospray ionization interface. The lower limit of quantification was 0.0508 ng/mL, and the assay exhibited a linear range of 0.0508-5.08 ng/mL (r = 0.9998). The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test vs reference product) in 18 healthy male Chinese volunteers. After a single 0.2 mg dose for the test and reference product, the resulting means of major pharmacokinetic parameters such as AUC(0-24), AUC(0-infinity), C(max), T(max) and t(1/2) of huperzine A were 16.35 +/- 3.42 vs 16.38 +/- 3.61 ng h/mL, 17.53 +/- 3.80 vs 17.70 +/- 3.97 ng h/mL, 2.47 +/- 0.49 vs 2.51 +/- 0.51 ng/mL, 1.3 +/- 0.4 vs 1.2 +/- 0.3 h and 5.92 +/- 0.75 vs 6.18 +/- 0.66 h, respectively, indicating that these two kinds of tablets were bioequivalent.  相似文献   

17.
A rapid and high sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for the quantification of zolpidem in human EDTA plasma using ondansetron (IS) as an internal standard. The analyte and IS were extracted from human plasma using ethyl acetate and separated on a C18 column (Inertsil-ODS, 5 μm, 4.6 × 50 mm) interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase, which consisted of a mixture of methanol and 20 mM ammonium formate (pH 5.00 ± 0.05; 75:25 v/v), was injected at a flow rate of 0.40 mL/min. The retention times of zolpidem and IS were approximately 1.76 and 1.22. The LC run time was 3 min. The electrospray ionization source was operated in positive ion mode. Multiple reaction monitoring used the [M + H](+) ions m/z 308.13 → 235.21 for zolpidem and m/z 294.02 → 170.09 for the ondansetron, respectively. Five freeze-thaw cycles was established at -20 and -70°C.The linearity of the response/concentration curve was established in human EDTA plasma over the concentration range 0.10-149.83 ng/mL. The lower detection limit [(signal-to-noise (S/N) > 3] was 0.04 ng/mL and the lower limit of quantification (S/N > 10) was 0.10 ng/mL. This LC-MS-MS method was validated with intra-batch and inter-batch precision of 0.52-8.66.The intra-batch and inter-batch accuracy was 96.66-106.11. Recovery of zolpidem in human plasma was 87.00% and IS recovery was 81.60%. The primary pharmacokinetic parameters were T(max) (h) = (1.25 ± 0.725), C(max) (ng/mL) (127.80 ± 34.081), AUC(0→t), = (665.37 ± 320.982) and AUC(0→∞), 686.03 ± 342.952, respectively.  相似文献   

18.
&#;&#;leyen  E. A. &#;.  &#;zden  T.  &#;zilhan  S.  Toptan  S. 《Chromatographia》2007,66(1):109-113

A simple, rapid, sensitive and selective LC-MS method was developed and validated for quantification of fexofenadine in human plasma. The LC-MS system was operated under the positive electrospray ionisation mode (ESI). After liquid–liquid extraction, fexofenadine analysis was performed on a C18 column with a mobile phase of acetonitrile: 10 mM ammonium acetate: formic acid, 70:30:0.1 (v/v/v) at a flow rate of 1 mL min−1 by using loratadine as internal standard. The lower limit of quantitation was 3 ng mL−1 for fexofenadine. The assay precision ranged between 1.05 and 12.56% and accuracy ranged between 82.00 and 109.07%. The validated method was successfully used to analyze human plasma samples in bioequivalence studies.

  相似文献   

19.
This paper reports the development of a rapid method for the enantioselective analysis of the nonsteroidal anti-inflammatory drug ibuprofen in human plasma by capillary electrophoresis employing the anionic cyclodextrin-modified electrokinetic chromatography mode. Sample cleanup was carried out by acidification with HCl followed by liquid-liquid extraction with hexane:isopropanol (99:1 v/v). The complete enantioselective analysis was performed within 10 min, using 100 mmol L(-1) phosphoric acid/triethanolamine buffer, pH 2.6, containing 2.0% w/v sulfated beta-cyclodextrin as chiral selector; fenoprofen, another nonsteroidal anti-inflammatory drug, was used as internal standard. The calibration curves were linear over the concentration range of 0.25-125.0 microg mL(-1) for each enantiomer of ibuprofen. The mean recoveries for ibuprofen enantiomers were up to 85%. The enantiomers studied could be quantified at three different concentrations (0.5, 5.0 and 50.0 microg mL(-1)) with a coefficient of variation and relative error not higher than 15%. The quantitation limit was 0.2 microg mL(-1) for (+)-(S)- and (-)-(R)-ibuprofen using 1 mL of human plasma. The plasma endogenous compounds and other drugs did not interfere with the present assay. The analysis of real plasma samples obtained from a healthy volunteer after administration of 600 mg of racemic ibuprofen showed a maximum plasma level of 29.6 and 39.9 microg mL(-1) of (-)-(R)- and (+)-(S)-ibuprofen, respectively, and the area under plasma concentration-time curve AUC(0-infinity) (+)-(S)/AUC(0-infinity) (-)-(R) ratio was 1.87.  相似文献   

20.
A rapid, sensitive and specific method to quantify bromazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using diethyl ether-hexane (80 : 20, v/v). The extracts were analyzed by high-performance liquid chromatography (HPLC) coupled to electrospray tandem mass spectrometry (MS/MS). Chromatography was performed isocratically on a Genesis C(18) analytical column (100 x 2.1 mm i.d., film thickness 4 microm). The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 5.0-150 ng ml(-1) (r(2) > 0.9952). The limit of quantification was 5 ng ml(-1). This HPLC/MS/MS procedure was used to assess the bioequivalence of two bromazepam 6 mg tablet formulations (bromazepam from Medley SA Indústria Farmacêutica as the test formulation and Lexotan from Produtos Roche Químico e Farmacêutico SA as the reference formulation). A single 6 mg dose of each formulation was administered to 24 healthy volunteers (12 males and 12 females). The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. Since the 90% CI for C(max), AUC(last), AUC(0-240 h) (linear) and AUC((0- infinity )) ratios were all inside the 80-125% interval proposed by the US Food and Drug Administration, it was concluded that the bromazepam formulation from Medley is bioequivalent to the Lexotan formulation for both the rate and the extent of absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号