首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We establish several existence and nonexistence results for the boundary value problem −Δu+K(x)g(u)=λf(x,u)+μh(x) in Ω, u=0 on ∂Ω, where Ω is a smooth bounded domain in , λ and μ are positive parameters, h is a positive function, while f has a sublinear growth. The main feature of this paper is that the nonlinearity g is assumed to be unbounded around the origin. Our analysis shows the importance of the role played by the decay rate of g combined with the signs of the extremal values of the potential K(x) on . The proofs are based on various techniques related to the maximum principle for elliptic equations.  相似文献   

2.
In this paper we study the existence of nontrivial solution of the problem −Δpu−(μ/[d(x)]p)|u|p−2u=f(u) in Ω and u=0 on ∂Ω, where is a bounded domain with smooth boundary in Existence is established using mountain-pass lemma and concentration of compactness principle.  相似文献   

3.
Consider the eigenvalue problem : −Δu=λf(x,u) in Ω, u=0 on ∂Ω, where Ω is a bounded smooth domain in RN. Denote by the set of all Carathéodory functions f:Ω×RR such that for a.e. xΩ, f(x,⋅) is Lipschitzian with Lipschitz constant L, f(x,0)=0 and , and denote by (resp. ) the set of λ>0 such that has at least one nonzero classical (resp. weak) solution. Let λ1 be the first eigenvalue for the Laplacian-Dirichlet problem. We prove that and . Our result is a positive answer to Ricceri's conjecture if use f(x,u) instead of f(u) in the conjecture.  相似文献   

4.
For a bounded domain Ω in , N?2, satisfying a weak regularity condition, we study existence of positive and T-periodic weak solutions for the periodic parabolic problem Luλ=λg(x,t,uλ) in , uλ=0 on . We characterize the set of positive eigenvalues with positive eigenfunctions associated, under the assumptions that g is a Caratheodory function such that ξg(x,t,ξ)/ξ is nonincreasing in (0,∞) a.e. satisfying some integrability conditions in (x,t) and
  相似文献   

5.
We study the existence of positive solutions to the elliptic equation ε2Δu(x,y)−V(y)u(x,y)+f(u(x,y))=0 for (x,y) in an unbounded domain subject to the boundary condition u=0 whenever is nonempty. Our potential V depends only on the y variable and is a bounded or unbounded domain which may coincide with . The positive parameter ε is tending to zero and our solutions uε concentrate along minimum points of the unbounded manifold of critical points of V.  相似文献   

6.
7.
By Karamata regular varying theory, a perturbed argument and constructing comparison functions, we show the exact asymptotic behaviour of the unique solution near the boundary to a singular Dirichlet problem −Δu=b(x)g(u)+λf(u), u>0, xΩ, u|Ω=0, which is independent on λf(u), and we also show the existence and uniqueness of solutions to the problem, where Ω is a bounded domain with smooth boundary in RN, λ>0, gC1((0,∞),(0,∞)) and there exists γ>1 such that , ∀ξ>0, , the function is decreasing on (0,∞) for some s0>0, and b is nonnegative nontrivial on Ω, which may be vanishing on the boundary.  相似文献   

8.
We discuss blow-up at space infinity of solutions to quasilinear parabolic equations of the form ut?(u)+f(u) with initial data u0L(RN), where ? and f are nonnegative functions satisfying ??0 and . We study nonnegative blow-up solutions whose blow-up times coincide with those of solutions to the O.D.E. v=f(v) with initial data ‖u0L(RN). We prove that such a solution blows up only at space infinity and possesses blow-up directions and that they are completely characterized by behavior of initial data. Moreover, necessary and sufficient conditions on initial data for blow-up at minimal blow-up time are also investigated.  相似文献   

9.
The purpose of this paper is to prove the existence of a unique, classical solution to the nonlinear elliptic partial differential equation −∇⋅(a(u(x))∇u(x))=f(x) under periodic boundary conditions, where u(x0)=u0 at x0Ω, with Ω=TN, the N-dimensional torus, and N=2,3. The function a is assumed to be smooth, and a(u(x))>0 for , where GR is a bounded interval. We prove that if the functions f and a satisfy certain conditions, then a unique classical solution u exists. The range of the solution u is a subset of a specified interval . Applications of this work include stationary heat/diffusion problems with a source/sink, where the value of the solution is known at a spatial location x0.  相似文献   

10.
We study the existence of positive solutions of the m-polyharmonic nonlinear elliptic equation m(−Δ)u+f(⋅,u)=0 in the half-space , n?2 and m?1. Our purpose is to give two existence results for the above equation subject to some boundary conditions, where the nonlinear term f(x,t) satisfies some appropriate conditions related to a certain Kato class of functions .  相似文献   

11.
By constructing the comparison functions and the perturbed method, it is showed that any solution uC2(Ω) to the semilinear elliptic problems Δu=k(x)g(u), xΩ, u|Ω=+∞ satisfies , where Ω is a bounded domain with smooth boundary in RN; , −2<σ, c0>0, ; gC1[0,∞), g?0 and is increasing on (0,∞), there exists ρ>0 such that , ∀ξ>0, , .  相似文献   

12.
By a sub-supersolution method and a perturbed argument, we improve the earlier results concerning the existence of ground state solutions to a semilinear elliptic problem −Δu+p(x)q|∇u|=f(x,u), u>0, xRN, , where q∈(1,2], for some α∈(0,1), p(x)?0, ∀xRN, and f:RN×(0,∞)→[0,∞) is a locally Hölder continuous function which may be singular at zero.  相似文献   

13.
14.
In this paper we analyze the second expansion of the unique solution near the boundary to the singular Dirichlet problem −Δu=b(x)g(u), u>0, xΩ, u|Ω=0, where Ω is a bounded domain with smooth boundary in RN, gC1((0,∞),(0,∞)), g is decreasing on (0,∞) with and g is normalised regularly varying at zero with index −γ (γ>1), , is positive in Ω, may be vanishing on the boundary.  相似文献   

15.
We consider the equation Δu=p(x)f(u) where p is a nonnegative nontrivial continuous function and f is continuous and nondecreasing on [0,∞), satisfies f(0)=0, f(s)>0 for s>0 and the Keller-Osserman condition where . We establish conditions on the function p that are necessary and sufficient for the existence of positive solutions, bounded and unbounded, of the given equation.  相似文献   

16.
In this paper we consider the semilinear elliptic problem Δu=a(x)f(u), u?0 in Ω, with the boundary blow-up condition u|Ω=+∞, where Ω is a bounded domain in RN(N?2), a(x)∈C(Ω) may blow up on ∂Ω and f is assumed to satisfy (f1) and (f2) below which include the sublinear case f(u)=um, m∈(0,1). For the radial case that Ω=B (the unit ball) and a(x) is radial, we show that a solution exists if and only if . For Ω a general domain, we obtain an optimal nonexistence result. The existence for nonradial solutions is also studied by using sub-supersolution method.  相似文献   

17.
Let u(t,x) be the solution of the heat equation (∂tx)u(t,x)=0 on subject to u(0,x)=f(x) on Rn. The main goal of this paper is to characterize such a nonnegative measure μ on that f(x)?u(t2,x) induces a bounded embedding from the Sobolev space , p∈[1,n) into the Lebesgue space , q∈(0,∞).  相似文献   

18.
On the dynamics of a class of nonclassical parabolic equations   总被引:3,自引:0,他引:3  
We consider the first initial and boundary value problem of nonclassical parabolic equations utμΔutΔu+g(u)=f(x) on a bounded domain Ω, where μ∈[0,1]. First, we establish some uniform decay estimates for the solutions of the problem which are independent of the parameter μ. Then we prove the continuity of solutions as μ→0. Finally we show that the problem has a unique global attractor Aμ in in the topology of H2(Ω); moreover, AμA0 in the sense of Hausdorff semidistance in as μ goes to 0.  相似文献   

19.
We present the existence of entire large positive radial solutions for the non-monotonic system Δu=p(|x|)g(v), Δv=q(|x|)f(u) on Rn where n?3. The functions f and g satisfy a Keller-Osserman type condition while nonnegative functions p and q are required to satisfy the decay conditions and . Further, p and q are such that min(p,q) does not have compact support.  相似文献   

20.
By Karamata regular variation theory and constructing comparison functions, we show the exact asymptotic behaviour of the unique classical solution near the boundary to a singular Dirichlet problem −Δu=k(x)g(u), u>0, xΩ, u|Ω=0, where Ω is a bounded domain with smooth boundary in RN; gC1((0,∞),(0,∞)), , for each ξ>0, for some γ>0; and for some α∈(0,1), is nonnegative on Ω, which is also singular near the boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号