首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Qiang Mei 《Journal of Non》2003,324(3):264-276
The glass forming range of the Ag2S + B2S3 + GeS2 ternary system was investigated for the first time and a wide range of ternary glasses were obtained. The Archimedes’ method was used to determine the densities of the Ag-B-Ge glasses. The thermal properties of these thioborogermanate glasses were studied by DSC and TMA. The Raman, IR and NMR spectroscopy were used to explore the short-range order structure of the binary (Ag-B) and (Ag-Ge) and ternary (Ag-B-Ge) glasses. The results show the presence of bridging sulfur tetrahedral units, GeS4/2 and AgBS4/2, and trigonal units, BS3/2, in the ternary glasses. Non-bridging sulfur units, AgSGeS3/2 and Ag3B3S3S3/2 six membered rings, are also observed in these glasses at higher Ag2S modification levels because the further addition of Ag2S results in the degradation of the bridging structures to form non-bridging structures. The NMR studies show that Ag2S goes into the GeS2 subnetwork to form Ag3S3GeS1/2 groups before going to the B2S3 subnetwork. In doing so, it is suggested that B10S20 supertetrahedra exist in Ag2S + B2S3 and Ag2S + B2S3 + GeS2 glasses. Significantly B-S-Ge bonds form in the B2S3 + GeS2 glasses, whereas they appear to be absent in the ternary glasses. From these observations, a structural model for these glasses has been developed and proposed.  相似文献   

2.
Bi-doped borosilicate glasses as sealants for sodium sulfur battery are developed. The joining properties involving hermeticity, wetting behavior, bonding strength, thermal shock resistance and corrosion resistance have been systematically investigated. As found, the joints achieve good hermeticity by bulk joining. The wetting behavior and bonding strength are governed by the joining temperature and Bi2O3 content. The higher temperature and higher Bi2O3 content induce better wetting behavior due to the low viscosity. The thermal shock resistance of the alpha-alumina/glass/beta-alumina joint is dependent of the thermal expansion match between the glasses and alpha-, beta-alumina. No microcracks are found in the glasses containing 12–42 wt.% Bi2O3 after 200-times thermal shock. The glass/alumina joints show good anti-corrosion behavior against sulfur, especially containing 42 wt.% Bi2O3.  相似文献   

3.
Glass-forming regions of the systems Na2SSiO2 and Na2SB2O3 have been investigated in order to clarify whether Na2S could be substituted for Na2O in sodium silicate or borate glasses, and the results were interpreted in terms of the structures of silicate and borate glasses. No difference was found in the glass-forming range of SiO2 content between the Na2SSiO2 and Na2OSiO2 systems, and the red color of Na2SSiO2 glasses suggests that the formation of polysulfides in the glass structure is probably due to the entrance of sulfur ions in the non-bridging sites of the glass network. On the other hand, not all of the sulfur added to the glass batches could be retained in the Na2SB2O3 glasses and the amount remaining in the glass products changed depending upon the amount of sodium ions in the glasses. Only a trace of sulfur was observed in the glasses containing less than 13 mol% of Na2S in the batches, but the sulfur content in the glasses increased steeply with sodium content up to 35 mol%, reached the maximum and then decreased slowly with sodium content. The insolubility of sulfur in the glasses with low sodium content was interpreted based on the compositional dependence of basicity of alkali-borate glasses, and the change in solubility of sulfur with sodium concentration was explained based on the well-known boron anomaly caused by the change in the coordination state of boron and on the formation of non-bridging oxygens or sulfurs in the glass structure.  相似文献   

4.
The non-linear optical performance and structure of TeO2-Nb2O5-ZnO glasses was investigated as a function of ZnO content. The third-order non-linear optical susceptibility (χ(3)) as measured by a Degenerate Four Wave Mixing (DFWM) method, initially increased with increasing ZnO content to about 8.2 × 10−13 esu for a glass containing 2.5 wt% ZnO, and then decreased to 5.9 × 10−13 esu as the ZnO content increased to 10 wt%. There was no noticeable change as the ZnO content increased from 10 to 15 wt%. The non-linear optical response time, which caused electron cloud deformation, was from 450 to 500 fs. The structure of these glasses as analyzed by Raman spectroscopy and FT-IR spectra, was affected by the addition of ZnO up to 5 wt%, when, it is believed, the Zn2+ ions occupied the interstitial positions in the glass network by replacing the Nb5+ ions. The replaced Nb5+ ions occupied the network forming positions as the Te4+ ions. Increasing ZnO > 5 wt% did not have any further effect on the glass structure.  相似文献   

5.
Local structure of the SnO-B2O3 glasses was investigated using several spectroscopic techniques. 11B MAS-NMR spectra suggested that BO4 tetrahedral units maximized at around the composition with 50 mol% SnO. The BO4 units were still present at compositions with high SnO content (67 mol% SnO), suggesting that SnO acted not only as a network modifier but also as a network former. O1s photoelectron spectra revealed that the addition of small amounts of SnO formed non-bridging oxygens (NBO) (B-O?Sn) and the amounts of NBO increased with an increase in SnO content. 119Sn Mössbauer spectra indicated that Sn was present only as Sn(II) in the glasses. The structure of the SnO-B2O3 glasses was compared with that of conventional alkali borate glasses and lead borate glasses. The thermal and viscous properties of these glasses were discussed on the basis of the glass structure revealed in the present study.  相似文献   

6.
The preparation and structural investigation of 17O-enriched xNa2O-(100−x)P2O5 glasses (46.5?x?62.8) by nuclear magnetic resonance (NMR) is described. Enriched phosphoric acid was prepared by hydrolysis of PCl5 with 17O-enriched water and neutralized with sodium carbonate. The sodium metaphosphate was then melted at 800 °C for 15 h and quenched. Polyphosphate and ultraphosphate glass compositions were prepared by remelting the metaphosphate with sodium carbonate and phosphorus pentoxide, respectively. 31P magic angle sample spinning (MAS) NMR was used to determine the Na2O/P2O5 content in the glasses. 17O NMR spectra (quadrupole echo for non-rotating samples and multiple-quantum excitation for rotating samples (MQMAS)) show two oxygen sites in the samples with large quadrupolar coupling constants (4.7 and 7.7 MHz), in accordance with the high phosphorus electronegativity. According to the correlation of 17O quadrupolar constants with bond ionicity, these two components are attributed to bridging P-O-P and non-bridging P-O?Na oxygens. The average P-O-P bond angle is estimated with the quadrupolar asymmetry derived from the fit of the static echo spectra. The MQMAS spectrum shows a distribution of non-bridging oxygen chemical shifts, attributed to a variation of bond length and angle.  相似文献   

7.
The well known and characterized fast ion conducting (FIC) LiI + Li2S + GeS2 glass-forming system has been further optimized for higher ionic conductivity and improved thermal and chemical stability required for next generation solid electrolyte applications by doping with Ga2S3 and La2S3. These trivalent dopants are expected to eliminate terminal and non-bridging sulfur (NBS) anions thereby increasing the network connectivity while at the same time increasing the Li+ ion conductivity by creating lower basicity [(Ga or La)S4/2] anion sites. Consistent with the finding that the glass-forming range for the Ga2S3 doped compositions is larger than that for the La2S3 compositions, the addition of Ga2S3 is found to eliminate NBS units to create bridging sulfur (BS) units that not only gives an improvement to the thermal stability, but also maintains and in some cases increases the ionic conductivity. The compositions with the highest Ga2S3 content showed the highest Tgs of ∼325 °C. The addition of La2S3 to the base glasses, by comparison, is found to create NBS by forming high coordination octahedral LaS63− sites, but yet still improved the chemical stability of the glass in dry air and retained its high ionic conductivity and thermal stability. Significantly, at comparable concentrations of Li2S and Ga2S3 or La2S3, the La2S3-doped glasses showed the higher conductivities. The addition of the LiI to the glass compositions not only improved the glass-forming ability of the compositions, but also increased the ionic conductivity glasses. LiI concentrations from 0 to 40 mol% improved the conductivities of the Ga2S3 glasses from ∼10−5 to ∼10−3 (Ω cm)−1 and of the La2S3 glasses from ∼10−4 to ∼10−3 (Ω cm)−1 at room temperature. A maximum conductivity of ∼10−3 (Ω cm)−1 at room temperature was observed for all of the glasses and this value is comparable to some of the best Li ion conductors in a sulfide glass system. Yet these new compositions are markedly more thermally and chemically stable than most Li+ ion conducting sulfide glasses. LiI additions decreased the Tgs and Tcs of the glasses, but increased the stability towards crystallization (Tc − Tg).  相似文献   

8.
《Journal of Non》2001,279(2-3):97-109
The Raman spectra of binary xNa2S+(1−x)B2S3 glasses and polycrystals have been measured for the first time and are used to develop a structural model of the sodium thioborate glasses. The Raman spectra confirm our previous infrared (IR) experimental conclusions that the structure of vitreous (ν-B2S3) is comprised of B3(0) groups and six-membered rings. It was also found that as sodium sulfide is added to the glass in the low alkali (x<0.35) glass forming region, the B4 groups are formed at the expense of the B3(0) groups first and then from the six-membered ring groups. The Raman spectra are also consistent with the presence of a pyramidal structural arrangement of B4 groups with trigonally coordinated sulfur atoms. This structure could explain the existence of the super-stoichiometric amounts of B4 groups found using nuclear magnetic resonance (NMR). Glasses in the high alkali region (0.50<x<0.80) progressively change from being comprised of metathioborate rings to being comprised of B3(3) groups. The Raman spectra also confirms the IR spectra which saw no evidence of B3(2) groups in these sodium thioborate glasses.  相似文献   

9.
Cadmium phosphate glasses, of general formula xCdO(1−x)P2O5 (0.25?x?0.6), have been prepared by melting in alumina crucibles, with resulting dissolution of up to 6.4 mol% Al2O3. The local structure in these glasses has been studied using 31P, 27Al and 113Cd nuclear magnetic resonance. The distribution of [PO4]Qn species as a function of composition has been shown to follow the simple binary model. The rate of change of the chemical shift of the 31P species in the Q2 environment depends on the bond order, which in turn reflects the extent of double bonding between phosphorus and oxygen.  相似文献   

10.
Velocities of 30 MHz longitudinal and shear ultrasonic waves have been measured in As2S3 and As2Se3 glasses as a function of hydrostatic pressure up to 1.5 kbar at 195 K and 3 kbar at 296 K. The elastic stiffness moduli are found to have relatively large, positive, pressure dependences which are about the same at both temperatures for both glasses. This behavior is attributed to the weakness of bonding between layers comprised of AsS3 and AsS3 pyramids.Inspection of data for a variety of glasses reveals a correlation between the value of CL/3CT and whether the elastic moduli are increased or decreased by pressure. (CL is the longitudinal modulus and CT the shear modulus.)Using the pressure dependences of the elastic moduli obtained in the present work, it is found that volume change is responsible for most of the temperature dependences of the moduli. In addition elastic gammas are obtained which are consistent with thermal Grüneisen gammas at 12 K. The pressure dependence of the volume of As2S3 glass at 296 K is calculated using the present results in the Murnagham equation. Agreement with volumetric data of Weir is obtained.  相似文献   

11.
The mixed alkali glass system Na2OK2OAl2O3SiO2 was investigated. Density, transformation temperature, refractive index, and chemical durability were studied. Optical absorption and ESR spectra of the CuO-doped glasses were determined.Calculations of the polarizability of O2?, bonding parameters of the Cu2+ complex, and the packing density are presented. It was found that for the mixed alkali glasses, the oxygen- alkali bond has a more ionic character than expected from additivity. This fact enables the non-linear changes of the refractive index, of the shift of the Cu2+ absorption band, and of the covalency to be interpreted as the Na mole fraction is varied. It is also possible to explain qualitatively the density, Tg and chemical durability non-linear variations with change of the Na content by the ionicity deviations of the bond character and the postulated pairs of Na+ and K+ ions in the mixed alkali glasses.  相似文献   

12.
I. Dyamant  E. Korin 《Journal of Non》2008,354(27):3135-3141
Glasses in the La2O3−CaO−B2O3 ternary system were studied. The glass forming range as determined by the appearance of the annealed cast was found to match previously published findings. Clear glasses were formed in the composition range of 5.7−19.1 mol% La2O3 with constant B2O3 content of 71.4 mol%, and in glasses of constant La2O3:CaO ratio of 1:4 with B2O3 content in the range of 71.4-55.0 mol%. The non-linear optical crystalline phase La2Ca2B10O19 was crystallized from the clear glasses after heat treatments, as determined by powder XRD. Two types of the LaBO3 crystalline phases were detected in the partially and the fully crystallized glass compositions outside the glass forming range. Data are reported for the glass transition temperature (Tg), dilatometric softening point (Td), linear coefficient of expansion (α), onset crystallization temperature (Tx), exothermal peak temperature (TP), density (ρ) and index of refraction (nD) in the clear glasses.  相似文献   

13.
A new ESR hyperfine structure (hfs) of Cu2+ was detected in moderately (cooling rate ≈ 3 K/s) and rapidly (103–105K/s) quenched borate glasses with Na2O content smaller than 5 mol% in addition to the already reported three patterns, spectra I, II and III, for the moderately quenched borate glasses with 5 ? [Na2O]?13, 20 ? [Na2O] ?37 and 55 ? [Na2O] ? 75, respectively. The ESR parameters of this spectrum were much the same as those of II, but a significant difference was observed between thermal stabilities of these spectra. The newly observed spectrum was named spectrum II′. A superposition of spectra II′ and I was seen in low alkali borate glasses ([Na2O] ? 5 mol%). The relative intensity of II′ to I increased remarkably with increasing quenching rate of the melts and with decreasing alkali content under the same quenching condition. In addition, spectrum II′ was found to relax into I upon thermal annealing of the glasses. Similar changes were observed also in ESR of the γ-induced Cd+ with 5s1 electronic configuration. A tentative model to account for the spectral changes was proposed on the basis of the characteristics of B—O bonding.  相似文献   

14.
The presence of sulfur in radioactive waste to be incorporated in borosilicate glasses entails difficulties mainly due to the relatively low solubility of sulfates in the vitreous phase. In this work a study is presented on the effects of the ratio R = [Na2O]/[B2O3], the type of sulfate added and the addition of V2O5 on the incorporation of sulfates in borosilicate glasses. Glass samples were prepared at the laboratory scale (up to 50-100 g) by melting oxide and sulfate powders under air in Pt/Au crucibles. XRF and ICP/AES chemical analysis, SEM/EDS, microprobe WDS and Raman spectroscopy were employed to characterize the fabricated samples. The main experimental results confirm that the incorporation of sulfates in borosilicate glasses is favored by the network depolymerization, which evolves with the ratio R. The addition of V2O5 seems to accelerate the kinetics of sulfur incorporation in the glass and, probably, increase the sulfate solubility by modifying the borate network and fostering the formation of voids of shape and size compatible with the sulfur coordination polyhedron in the glassy network. The kinetics of X2SO4 incorporation in the glass seems to be slower when X = Cs.  相似文献   

15.
Calcium aluminosilicate and calcium fluoro-aluminosilicate glasses have been characterized by 29Si, 27Al and 19F MAS-NMR. The two calcium aluminosilicate glasses examined were based on the composition 2SiO2 · Al2O3 · 2CaO (ART1) and the mineral anorthite 2SiO2 · Al2O3 · CaO (ART2). The observed chemical shifts for 29Si and 27Al agreed with previous studies. The fluorine containing glasses were based on 2SiO2 · Al2O3 · (2−X)CaO · XCaF2. The 29Si chemical shift moved in a negative direction with increase fluorine content indicating a progressive reduction in the average number of non-bridging oxygens, NBO, attached to a silicon. The 27Al spectra indicated the presence of four coordinate aluminium in the glasses with X=0.0-0.75, but aluminium was present in Al(IV), Al(V) and Al(VI) coordination states in the highest fluorine content glass with X=1.0. The 19F spectra indicated the presence of F-Ca(n) in low fluorine content glasses and both F-Ca(n) and Al-F-Ca(n) in high fluorine content glasses. We speculate here that the Al-F-Ca(n) species are oxyfluorides [AlOxFy]n, where x=1-6, y=1-6 and n is the charge on the total complex when aluminium is in Al(IV), Al(V) and Al(VI) coordinate states. The reduction in the average number of NBO per silicon with increasing fluorine content is explained by fluorine converting Ca2+ to F-Ca(n).  相似文献   

16.
The X-ray structure of the triethyl ammonium salt of O,O′-bis(o-tolyl)dithiophosphate, [Et3NH]+[(2-MeC6H4O)2PS2], has been determined. Crystal data: Monoclinic, P21/c, a = 15.4342(6) Å, b = 10.1913(4) Å, c = 14.0729(6) Å, β = 100.855(1), V = 2174.0(2) Å−3, Z = 4. The immediate environment around phosphorous is distorted tetrahedral with two sulfur and two oxygen atoms in the coordination sphere, with N–H–S bonding involving only one of the sulfur atoms.  相似文献   

17.
Hongxia Lu 《Journal of Non》2007,353(26):2528-2544
Tracer diffusion coefficients of the radioactive isotope Na-22 were measured in glasses of the type (CaO·Al2O3)x(2 SiO2)1−x to study the diffusion of sodium as a function of glass composition, x, temperature and initial water content. The diffusion of Na-22 in glasses diffusion-annealed in dry air can always be well described by a single tracer diffusion coefficient, but sometimes not in samples annealed in common air. It was found that the sodium tracer diffusion coefficient decreases by about six orders of magnitude when the glass composition x changes from 0 to 0.75 at 800 °C. The temperature dependence of the diffusion of sodium seems to decrease as the silica content increases. Variations of the initial water content in some of the glasses investigated did not very significantly influence the rate of the tracer diffusion of sodium.  相似文献   

18.
E. Mansour 《Journal of Non》2011,357(5):1364-3380
Fourier transformation infrared spectra, density and DC electrical conductivity of 30Li2O · xCeO2⋅(70 − x)B2O3 glasses, where x ranged between 0 and 15 mol%, have been investigated. The results suggested that CeO2 plays the role of network modifier up to 7.5 mol%. At higher concentrations it plays a dual role; where most of ceria plays the role of network former. The density was observed to increase with increasing CeO2 content. The effect on density of the oxides in the glasses investigated is in the succession: B2O3 < Li2O < CeO2. Most of CeO2 content was found to be associated with B2O3 network to convert BO3 into B O4 units. The contribution of Li+ ions in the conduction process is much more than that due to small polarons. The conductivity of the glasses is mostly controlled by the Li+ ions concentration rather than the activation energy for CeO2 > 5 mol%. Lower than 5 mol% CeO2 the conductivity is controlled by both factors. The dependence of W on BO4 content supports the idea of ionic conduction in these glasses.  相似文献   

19.
Bing Zhang  Li Song  Fengzhen Hou 《Journal of Non》2008,354(18):1948-1954
Glasses in the ternary system ZnO-Sb2O3-P2O5 were investigated as potential alternatives to lead based glasses for low temperature applications. The glass-forming region of ZnO-Sb2O3-P2O5 system has been determined. Structure and properties of the glasses with the composition (60 − x)ZnO-xSb2O3-40P2O5 were characterized by infrared spectra (IR), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results of IR indicated the role of Sb3+ as participant in glass network structure, which was supported by the monotonic and remarkable increase of density (ρ) and molar volume (VM) with increasing Sb2O3 content. Glass transition temperature (Tg) and thermal stability decreased, and coefficient of thermal expansion (α) increased with the substitution of Sb2O3 for ZnO in the range of 0-50 mol%. XRD pattern of the heat treated glass containing 30 mol% Sb2O3 indicated that the structure of antimony-phosphate becomes dominant. The improved water durability of these glasses is consistent with the replacement of easily hydrated phosphate chains by corrosion resistant P-O-Sb bonds. The glasses containing ?30 mol% Sb2O3 possess lower Tg (<400 °C) and better water durability, which could be alternatives to lead based glasses for practical applications with further composition improvement.  相似文献   

20.
The results of studying electrooptical Kerr sensitivity in heavy metal silicate and phosphate glasses and glass-ceramics are presented. A niobium-lithium-silicate glass demonstrating a record Kerr coefficient (266×10−16 m/V2) has been formed. Formation of the transparent glass-ceramics containing electrooptical sodium niobate microcrystals has been studied, and glass-ceramics demonstrating Kerr coefficients higher than 6000×10−16 m/V2 have been elaborated. On the base of the effective medium approximation, it is shown that the Kerr coefficient of these glass-ceramics depends on the volume fraction of sodium niobate microcrystals, vc as a linear function of vc(1−vc)−2 A conception of the origin of electrooptical sensitivity of glasses is proposed. This conception is based on the hypothesis that in glasses there exist regions with exactly crystalline ordering within 2-3 coordination spheres, with these regions having no phase boundaries. These regions are named the crystal motifs (CM). Due to the highly effective mechanism of nuclear polarizability of the electrooptical crystals, the motifs with the symmetry of such crystals are responsible for high permittivity and Kerr sensitivity of the glasses, and they play a role of pre-nuclei while electrooptical glass-ceramics are forming under glass heat treatment. It has been found that synthesized barium-titanate-silicate and niobium-lithium-phosphate glasses demonstrate extremely low Kerr coefficients, and they do not form transparent glass-ceramics with any electrooptical precipitates. This contradicts literature data and is explained by the difference in the conditions of glass synthesis, which are supposed to be responsible for the formation of proper CMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号