首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Let A be a prime ring of characteristic not 2, with center Z(A) and with involution *. Let S be the set of symmetric elements of A. Suppose that f:SA is an additive map such that [f(x),f(y)]=[x,y] for all x,yS. Then unless A is an order in a 4-dimensional central simple algebra, there exists an additive map μ:SZ(A) such that f(x)=x+μ(x) for all xS or f(x)=-x+μ(x) for all xS.  相似文献   

2.
Let G be a graph with vertex set V and edge set E, and let A be an abelian group. A labeling f:VA induces an edge labeling f:EA defined by f(xy)=f(x)+f(y). For iA, let vf(i)=card{vV:f(v)=i} and ef(i)=card{eE:f(e)=i}. A labeling f is said to be A-friendly if |vf(i)−vf(j)|≤1 for all (i,j)∈A×A, and A-cordial if we also have |ef(i)−ef(j)|≤1 for all (i,j)∈A×A. When A=Z2, the friendly index set of the graph G is defined as {|ef(1)−ef(0)|:the vertex labelingf is Z2-friendly}. In this paper we completely determine the friendly index sets of 2-regular graphs. In particular, we show that a 2-regular graph of order n is cordial if and only if n?2 (mod 4).  相似文献   

3.
Let X be a vector space over a field K of real or complex numbers, nN and λK?{0}. We study the stability problem for the Go?a?b-Schinzel type functional equations
f(x+fn(x)y)=λf(x)f(y)  相似文献   

4.
The concept of degree distance of a connected graph G is a variation of the well-known Wiener index, in which the degrees of vertices are also involved. It is defined by D(G)=∑xV(G)d(x)∑yV(G)d(x,y), where d(x) and d(x,y) are the degree of x and the distance between x and y, respectively. In this paper it is proved that connected graphs of order n≥4 having the smallest degree distances are K1,n−1,BS(n−3,1) and K1,n−1+e (in this order), where BS(n−3,1) denotes the bistar consisting of vertex disjoint stars K1,n−3 and K1,1 with central vertices joined by an edge.  相似文献   

5.
In this paper we study the maximum-minimum value of polynomials over the integer ring Z. In particular, we prove the following: Let F(x,y) be a polynomial over Z. Then, maxxZ(T)minyZ|F(x,y)|=o(T1/2) as T→∞ if and only if there is a positive integer B such that maxxZminyZ|F(x,y)|?B. We then apply these results to exponential diophantine equations and obtain that: Let f(x,y), g(x,y) and G(x,y) be polynomials over Q, G(x,y)∈(Q[x,y]−Q[x])∪Q, and b a positive integer. For every α in Z, there is a y in Z such that f(α,y)+g(α,y)bG(α,y)=0 if and only if for every integer α there exists an h(x)∈Q[x] such that f(x,h(x))+g(x,h(x))bG(x,h(x))≡0, and h(α)∈Z.  相似文献   

6.
This paper considers a problem proposed by Bellman in 1970: given a continuous kernel K(x, y) defined on I × I, find a pair of continuous functions f and g such that f(x) + g(y) ? K(x, y) on I × I and ∝I (f + g) is minimum. The notion of basic decomposition of K is defined, and it is shown that whenever K(x, y) or K(x, a + b ? y), I = [a, b], admits a basic decomposition, Bellman's problem has a unique differentiable solution, provided K is differentiable. Explicit formulas for such solutions are given. More generally, there are kernels which admit basic decompositions on subintervals which can be “pasted together” to define a unique piecewise differentiable solution.  相似文献   

7.
Let G=(V,E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number of G, γ(G), equals the minimum cardinality of a dominating set. A Roman dominating function on graph G=(V,E) is a function f:V→{0,1,2} satisfying the condition that every vertex v for which f(v)=0 is adjacent to at least one vertex u for which f(u)=2. The weight of a Roman dominating function is the value f(V)=∑vVf(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k(2?k?γ(G)), we give a characterization of graphs for which γR(G)=γ(G)+k, which settles an open problem in [E.J. Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22].  相似文献   

8.
For an infinite-dimensional Banach space X, S and T bounded linear operators from X to X such that ‖S‖,‖T‖<1 and wX, let us consider the IFS Sw=(X,f1,f2), where f1,f2:XX are given by f1(x)=S(x) and f2(x)=T(x)+w, for all xX. We prove that if the operator S is finite-dimensional, then the set {wX|the attractor of Sw is not connected} is open and dense in X.  相似文献   

9.
A function f:V(G)→{0,1,2} is a Roman dominating function if every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. A function f:V(G)→{0,1,2} with the ordered partition (V0,V1,V2) of V(G), where Vi={vV(G)∣f(v)=i} for i=0,1,2, is a unique response Roman function if xV0 implies |N(x)∩V2|≤1 and xV1V2 implies that |N(x)∩V2|=0. A function f:V(G)→{0,1,2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by uR(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter.  相似文献   

10.
Given a unimodal map f, let I=[c2,c1] denote the core and set E={(x0,x1,…)∈(I,f)|xiω(c,f) for all iN}. It is known that there exist strange adding machines embedded in symmetric tent maps f such that the collection of endpoints of (I,f) is a proper subset of E and such that limk→∞Q(k)≠∞, where Q(k) is the kneading map.We use the partition structure of an adding machine to provide a sufficient condition for x to be an endpoint of (I,f) in the case of an embedded adding machine. We then show there exist strange adding machines embedded in symmetric tent maps for which the collection of endpoints of (I,f) is precisely E. Examples of this behavior are provided where limk→∞Q(k) does and does not equal infinity, and in the case where limk→∞Q(k)=∞, the collection of endpoints of (I,f) is always E.  相似文献   

11.
The purpose of this paper is to prove the existence of a unique classical solution u(x) to the quasilinear elliptic equation −∇⋅(a(u)∇u)+v⋅∇u=f, where u(x0)=u0 at x0Ω and where n⋅∇u=g on the boundary ∂Ω. We prove that if the functions a, f, v, g satisfy certain conditions, then a unique classical solution u(x) exists. Applications include stationary heat/diffusion problems with convection and with a source/sink, where the value of the solution is known at a spatial location x0Ω, and where n⋅∇u is known on the boundary.  相似文献   

12.
Let f be a permutation of V(G). Define δf(x,y)=|dG(x,y)-dG(f(x),f(y))| and δf(G)=∑δf(x,y) over all the unordered pairs {x,y} of distinct vertices of G. Let π(G) denote the smallest positive value of δf(G) among all the permutations f of V(G). The permutation f with δf(G)=π(G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles Cn and we prove that π(Cn)=4⌊n/2⌋-4, moreover, we obtain the set of near automorphisms of Cn.  相似文献   

13.
In this paper, we consider the problem of numerical analytic continuation of an analytic function f(z)=f(x+iy) on a strip domain Ω+={z=x+iyCxR,0<y<y0}, where the data is given approximately only on the real axis y=0. This problem is severely ill-posed: the solution does not depend continuously on the given data. A novel method (filtering) is used to solve this problem and an optimal error estimate with Hölder type is proved. Numerical examples show that this method works effectively.  相似文献   

14.
For an oriented graph D, let ID[u,v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For SV(D), let ID[S] denote the union of all ID[u,v] for all u,vS. Let [S]D denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with ID[S]=V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S]D=V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(G)=min{g(D):DO(G)}, g+(G)=max{g(D):DO(G)}, h(G)=min{h(D):DO(G)}, and h+(G)=max{h(D):DO(G)}. By the above definitions, h(G)≤g(G) and h+(G)≤g+(G). In the paper, we prove that g(G)<h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(G)−h(G)=a and g+(G)−h+(G)=b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262].  相似文献   

15.
Let G be a simple graph without isolated vertices with vertex set V(G) and edge set E(G). A function f:E(G)?{−1,1} is said to be a signed star dominating function on G if ∑eE(v)f(e)≥1 for every vertex v of G, where E(v)={uvE(G)∣uN(v)}. A set {f1,f2,…,fd} of signed star dominating functions on G with the property that for each eE(G), is called a signed star dominating family (of functions) on G. The maximum number of functions in a signed star dominating family on G is the signed star domatic number of G, denoted by dSS(G).In this paper we study the properties of the signed star domatic number dSS(G). In particular, we determine the signed domatic number of some classes of graphs.  相似文献   

16.
Strong commutativity preserving maps on Lie ideals   总被引:2,自引:0,他引:2  
Let A be a prime ring and let R be a noncentral Lie ideal of A. An additive map f:RA is called strong commutativity preserving (SCP) on R if [f(x),f(y)]=[x,y] for all x,yR. In this paper we show that if f is SCP on R, then there exist λC, λ2=1 and an additive map μ:RZ(A) such that f(x)=λx+μ(x) for all xR where C is the extended centroid of A, unless charA=2 and A satisfies the standard identity of degree 4.  相似文献   

17.
The induced path transit function J(u,v) in a graph consists of the set of all vertices lying on any induced path between the vertices u and v. A transit function J satisfies monotone axiom if x,yJ(u,v) implies J(x,y)⊆J(u,v). A transit function J is said to satisfy the Peano axiom if, for any u,v,w∈V,x∈J(v,w), yJ(u,x), there is a zJ(u,v) such that yJ(w,z). These two axioms are equivalent for the induced path transit function of a graph. Planar graphs for which the induced path transit function satisfies the monotone axiom are characterized by forbidden induced subgraphs.  相似文献   

18.
The geodesic interval function I of a connected graph allows an axiomatic characterization involving axioms on the function only, without any reference to distance, as was shown by Nebeský [20]. Surprisingly, Nebeský [23] showed that, if no further restrictions are imposed, the induced path function J of a connected graph G does not allow such an axiomatic characterization. Here J(u,v) consists of the set of vertices lying on the induced paths between u and v. This function is a special instance of a transit function. In this paper we address the question what kind of restrictions could be imposed to obtain axiomatic characterizations of J. The function J satisfies betweenness if wJ(u,v), with wu, implies uJ(w,v) and xJ(u,v) implies J(u,x)⊆J(u,v). It is monotone if x,yJ(u,v) implies J(x,y)⊆J(u,v). In the case where we restrict ourselves to functions J that satisfy betweenness, or monotonicity, we are able to provide such axiomatic characterizations of J by transit axioms only. The graphs involved can all be characterized by forbidden subgraphs.  相似文献   

19.
Let G be a graph and f:GG be a continuous map. Denote by P(f), R(f) and Ω(f) the sets of periodic points, recurrent points and non-wandering points of f, respectively. In this paper we show that: (1) If L=(x,y) is an open arc contained in an edge of G such that {fm(x),fk(y)}⊂(x,y) for some m,kN, then R(f)∩(x,y)≠∅; (2) Any isolated point of P(f) is also an isolated point of Ω(f); (3) If xΩ(f)−Ω(fn) for some nN, then x is an eventually periodic point. These generalize the corresponding results in W. Huang and X. Ye (2001) [9] and J. Xiong (1983, 1986) [17] and [19] on interval maps or tree maps.  相似文献   

20.
In this paper we examine existence of monotone approximations of solutions of singular boundary value problem -(p(x)y(x))=q(x)f(x,y,py) for 0<x?b and limx→0+p(x)y(x)=0,α1y(b)+β1p(b)y(b)=γ1. Under quite general conditions on f(x,y,py) we show that solution of the singular two point boundary value problem is unique. Here is allowed to have integrable singularity at x=0 and we do not assume .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号