首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unstable, short-lived BiH3 has been synthesized and investigated by rotational spectroscopy in the range 158 (J=1-0) to 1280 GHz (J=8-7). Quadrupole and spin-rotation hyperfine structures (eQq=584.676(96) MHz), and the A1A2 splitting of the K=3 ground state level, have been resolved. By merging the pure rotational data with 1764 ground state combination differences obtained from the analysis of high resolution Fourier transform infrared spectra of the ν1-ν4 bands [J. Mol. Spectrosc. (2004) (in press)] spanning J and K values up to 16 and 14, respectively, with 0?ΔK?9, the ground state rotational and centrifugal distortion constants up to octic and sextic terms for reductions A and B, respectively, have been determined. Of the reductions of the ground state rovibrational Hamiltonian, reduction B including ε rather than h3 as off-diagonal element is clearly favored. An experimental r0 structure of the very-near spherical oblate symmetric top BiH3, r(BiH)=178.82 pm and α(HBiH)=90.320°, has been deduced from the rotational constants B0=2.64160172(18) and C0=2.6010403(31) cm−1. The derived experimental re structure, re(BiH)=177.834(50) pm and αe(HBiH)=90.321(10)°, was determined. This is in excellent agreement with the most recent ab initio structure, re(BiH)=177.84 pm, and αe(HBiH)=90.12°.  相似文献   

2.
The rotational spectra of 34SO2F2 and S18O16OF2 have been measured in their ground vibrational state between 9 and 110 GHz. Accurate rotational constants have been derived. Various experimental structures including the average structure have been determined. The ab initio structure has been calculated at the CCSD(T) level of theory. The different structures are compared and the best equilibrium structure is the ab initio structure: re(SO)=1.401 (3) Å, re(SF)=1.532 (3) Å, ∠e(OSO)=124.91(20)°, ∠e(FSF)=95.53 (20)°.  相似文献   

3.
The large-amplitude bending motion in CsOH, a ‘classical’ molecule whose microwave spectrum was first recorded in 1967, has been studied ab initio. The three-dimensional potential energy surface has been calculated at the RCCSD(T)_DK3/[QZP + g ANO-RCC (Cs, O, H)] level of theory and employed in MORBID calculations of the rotation-vibration energies and intensities. The ground electronic state is 1Σ+ with the equilibrium structure re(Cs-O) = 2.3930 Å, re(O-H) = 0.9587 Å, and ∠e(Cs-O-H) = 180.0°. The O-H moiety is bound to Cs by an ionic bond and the molecule can be described as Csδ+(OH)δ-. Hence, the bending potential is shallow and gives rise to large-amplitude bending motion. The ro-vibrationally averaged structural parameters, determined as expectation values over MORBID wavefunctions, are 〈r(Cs-O)〉0 = 2.3987 Å, 〈r(O-H)〉0 = 0.9754 Å, and 〈∠(Cs-O-H)〉0 = 163°. Although the averaged structure in the vibrational ground state is far from being linear, the Yamada-Winnewissi-linearity parameter for CsOH is γ0≈-1.0, the value characteristic for a linear molecule.  相似文献   

4.
The Born-Oppenheimer (BO) equilibrium molecular structure () of cis-methyl formate has been determined at the CCSD(T) level of electronic structure theory using Gaussian basis sets of at least quadruple-ζ quality and a core correlation correction. The quadratic, cubic and semi-diagonal quartic force field in normal coordinates has also been computed at the MP2 level employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure () has been derived from experimental ground-state rotational constants and the lowest-order rovibrational interaction parameters calculated from the ab initio cubic force field. To determine structures, it is important to start from accurate ground-state rotational constants. Different spectroscopic methods, applicable in the presence of internal rotation and used in the literature to obtain “unperturbed” rotational constants from the analysis and fitting of the spectrum, are reviewed and compared. They are shown to be compatible though their precision may be different. The and structures are in good agreement showing that, in the particular case of cis-methyl formate, the methyl torsion can still be treated as a small-amplitude vibration. The best equilibrium structure obtained for cis-methyl formate is: r(Cm-O) = 1.434 Å, r(O-Cc) = 1.335 Å, r(Cm-Hs) = 1.083 Å, r(Cm-Ha) = 1.087 Å, r(Cc-H) = 1.093 Å, r(CO) = 1.201 Å, (COC) = 114.4°, (CCHs) = 105.6°, (CCHa) = 110.2°, (OCH) = 109.6°, (OCO) = 125.5°, and τ(HaCOC) = 60.3°. The accuracy is believed to be about 0.001 Å for the bond lengths and 0.1° for the angles.  相似文献   

5.
The quadratic, cubic, and semi-diagonal quartic force field of vinyl chloride has been calculated at the MP2 level of theory employing a basis set of triple-ζ quality. The spectroscopic constants derived from this force field are compared with the experimental values. To make this comparison more complete, the rotational constants of the lowest excited state, v9 = 1 at 395 cm−1 have been determined by microwave spectroscopy and the ν12 band (around 618 cm−1) has been investigated by high-resolution infrared Fourier transform spectroscopy. The equilibrium structure has been derived from experimental ground state rotational constants and ab initio rovibrational interaction parameters. This semi-experimental structure is in excellent agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of quintuple-ζ quality and a core correlation correction. The experimental mass-dependent rm structures are also determined and their accuracy is discussed. The recommended equilibrium geometry is: r (CC) = 1.3262(10), r (CCl) = 1.7263(10), r (CHg) = 1.0784(10), r (CHc) = 1.0795(10), r (CHt) = 1.0797(10), ∠(CCCl) = 122.77(10)°, ∠(CCHg) = 123.86(10)°, ∠(CCHc) = 121.80(10)°, ∠(CCHt) = 119.29(10)°.  相似文献   

6.
The equilibrium structure of silyl fluoride, SiH3F, has been reinvestigated using both theoretical and experimental data. With respect to the former, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, and inclusion of core correlation as well as relativistic corrections (r(Si-F) = 1.5911 Å, r(Si-H) = 1.4695 Å, and ∠FSiH = 108.30°). A semi-experimental equilibrium structure has been determined based on the available rotational constants for the various isotopic species of silyl fluoride (28SiH3F, 28SiD3F, 29SiH3F, 29SiD3F, 30SiH3F, 30SiD3F, 28SiH2DF, and 28SiHD2F) together with computed vibrational corrections to the rotational constants (r(Si-F) = 1.59048(6) Å, r(Si-H) = 1.46948(9) Å, and ∠FSiH = 108.304(9)°).  相似文献   

7.
The quadratic, cubic, and semi-diagonal quartic force field of OCFCl has been calculated at the MP2 level of theory employing a basis set of triple-zeta quality. The spectroscopic constants derived from the force field are in excellent agreement with those from previous and new experiments. The equilibrium structure has been derived from experimental ground state rotational constants and ab initio rovibrational interaction parameters. This semi-experimental structure is in excellent agreement with the ab initio structure calculated at the CCSD(T) level of theory. This good agreement indicates that the derived structure is accurate. The equilibrium geometry is: re(CO)=1.173(1) Å; re(C-F)=1.323(1) Å; re(C-Cl)=1.721(1) Å; ∠e(OCF)=124.0 (1)°; and ∠e(OCCl)=126.4(1)°.  相似文献   

8.
The quadratic, cubic and semi-diagonal quartic force field of nitric acid has been calculated at the CCSD(T) level of theory employing a basis set of triple-ζ quality. A semi-experimental equilibrium structure has been derived from experimental ground state rotational constants and rovibrational interaction parameters calculated from the ab initio force field. It is found that the A and B semi-experimental equilibrium rotational constants of the 18O isotopologues (for which the rotation of principal axes is large) cannot be accurately reproduced. This problem is discussed and a remedy is proposed. Finally, the semi-experimental structure is in agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of at least quadruple-ζ quality and a core correlation correction, except for the long NO single bond for which the CCSD(T) value is too short due to inadequate treatment of electron correlation. The empirical structures are also determined and their accuracy is discussed. The best equilibrium structure is: re(NOsyn) = 1.209(1) Å, re(NOanti) = 1.194(1) Å, re(NO) = 1.397(1) Å, re(OH) = 0.968(1) Å, (ONOsyn) = 115.8(1)°, (ONOanti) = 114.2(1)° and (NOH) = 102.2(1)°.  相似文献   

9.
Microwave spectra of the unstable phosphorus containing molecule, HPO, and its deuterated species were measured in the frequency range of 70-380 GHz. The molecule was produced by a DC-glow discharge of a gas mixture of PH3, CO2, and H2(D2). Rotational constants and centrifugal distortion constants for HPO and DPO were determined accurately. Harmonic force constants were evaluated from the centrifugal distortion constants determined in the present study, and with vibrational frequencies reported previously. The zero-point average structure for HPO was obtained by taking the isotopic difference of the PH bond length into consideration: rz(PH)=1.473(7) Å, rz(PO)=1.4843(9) Å, and θz=104.57(16)°. The errors were estimated from the residual inertial defect. Equilibrium bond lengths for the PH and PO bonds were derived as 1.455(7) and 1.4800(9) Å, respectively, by assuming anharmonic constants of the corresponding diatomic molecules.  相似文献   

10.
High-resolution (0.0015-0.0035 cm−1) infrared spectra of isotopically enriched 11BF3 have been examined in detail. The analysis of the combination and overtone states within the region of study, from 1650 to 4600 cm−1, led to the assignment of over 25,000 transitions. The major perturbations were due to the Fermi resonances between states possessing one quantum of v3 and three quanta of v4. With corrections through the quadratic rotational terms, the equilibrium Be and Ce values have been determined; 0.3462679(7) cm−1 and 0.1731151(6) cm−1, respectively. An improved set of equilibrium rotational constants for 10BF3, consistent with this analysis of 11BF3 are also given. The averaged equilibrium values for both isotopomers lead to a B-F bond distance of re = 130.704 ± 0.005 pm. All of the quadratic anharmonic constants, with the exception of x33 were independently determined from experiment. For the first time for BF3, a normal force field analysis was performed that utilized the experimentally determined, fundamental harmonic vibrational frequencies.  相似文献   

11.
We have calculated the three-dimensional potential energy surfaces for the 1 2A′ and 1 2A″ states of BrCN+ at the MR-SDCI_DK+Q/[QZP-ANO-RCC (Br, C, N)] level of theory, where MR-SDCI_DK means ‘multi-reference single and double excitation configuration interaction calculation with Douglas-Kroll Hamiltonian.’ These ab initio potential energy surfaces have a common minimum (corresponding to the state) at a linear equilibrium structure with re(Br-C) = 1.735 Å and re(C-N) = 1.199 Å. Variational RENNER calculations yield a zero-point averaged structure (with the structural parameters calculated as expectation values over rovibrational wavefunctions) with 〈r(Br-C)〉0 = 1.739 Å, 〈r(C-N)〉0 = 1.204 Å, and 〈∠(Br-C-N)〉0 = 172(4)°. A severe Fermi resonance between 2ν2 and ν3 has been found theoretically for the 2A″ potential energy surface. Comparing the ab initio zero-point averaged structure with a recent, experimentally derived r0 structure, it is concluded that the effects of large-amplitude bending motion should be taken into account explicitly in the process of deriving the r0 structure from the experimental values of the rotational constants. The electronic structure of BrCN+ has also been discussed.  相似文献   

12.
The pure rotational transitions of HN2+ and DN2+ in the first excited vibrational states for all the fundamental vibrational modes have been observed in the range of 300-750 GHz. The molecular constants determined are much more accurate compared with those obtained from the infrared spectroscopy. The equilibrium rotational constants, Be = 46832.45 (71) MHz for HN2+ and Be = 38708.38 (58) MHz for DN2+, have been determined by correcting for the higher-order vibration-rotation interaction effects, γij, obtained by an infrared investigation. The equilibrium bond lengths are derived from these equilibrium rotational constants: re(H-N) = 1.03460 (14) Å and re (N-N) = 1.092698 (26) Å.  相似文献   

13.
The emission spectra of CaH and CaD have been recorded at high resolution using a Fourier transform spectrometer and bands belonging to the E2Π-X2Σ+ transition have been measured in the 20 100-20 700 cm−1 region. A rotational analysis of 0-0 and 1-1 bands of both the isotopologues has been carried out. The present measurements have been combined with the previously available pure rotation and vibration-rotation data to provide improved spectroscopic constants for the E2Π state. The constants ΔG(½) = 1199.8867(34) cm−1, Be = 4.345032(49) cm−1, αe = 0.122115(92) cm−1, re = 1.986633(11) Å for CaH, and ΔG(½)=868.7438(46) cm−1, Be = 2.212496(51) cm−1, αe = 0.036509(97) cm−1, re = 1.993396(23) Å for CaD have been determined.  相似文献   

14.
The three-dimensional potential energy and dipole moment surfaces for the electronic ground state 6Δ of FeCN have been computed at the MR-SDCI + Q + Erel/[Roos ANO (Fe), aug-cc-pVQZ (C, N)] level of theory, where MR-SDCI means ‘multi-reference single and double excitation configuration interaction’ and ANO means ‘atomic natural orbital’. Based on these potential energy and dipole moment surfaces, the spectroscopic parameters, rovibronic energies, structural parameters, vibrational transition moments, and the wavenumbers and intensities of selected rotation-vibration transitions have been calculated. The equilibrium structure is linear with re(Fe-C) = 2.048 Å and re(C-N) = 1.168 Å, and the zero-point averaged structure is bent with 〈r(Fe-C)〉0 = 2.082 Å, 〈r(C-N)〉0 = 1.172 Å, and 〈∠(Fe-C-N)〉0 = 170(5)°. At all the MR-SDCI + Q and the size-extensive multi-reference averaged quadratic coupled-cluster (MR-AQCC) levels of theory, with and without relativistic correction Erel, that were employed in the present work, 6Δ FeCN is predicted to be slightly more stable than 6Δ FeNC. For example, the energy difference between the two isomers is approximately 150 cm−1 at the highest level of theory employed, MR-AQCC + Erel/[Roos ANO (Fe), aug-cc-pVQZ (C, N)] with zero-point energy correction. The electronic structure of 6Δ FeCN has also been compared with that of 6Δ FeNC. At present, no experimental spectroscopic data are available for 6Δ FeCN. It is hoped that the present work will stimulate experimental investigations of this molecule.  相似文献   

15.
The absorption spectrum of deuterated nitrous acid DONO in the region from 2350 to 3000 cm−1 has been recorded at a resolution of 0.003 cm−1 using a Fourier-transform spectrometer. For the first time, 1366 a- and b-type transitions in the υ1 fundamental band of trans-DONO and 741 b-type transitions in the υ1 fundamental band of cis-DONO have been assigned. Rotational and centrifugal distortion constants up to sextic order were determined for the v1 = 1 states of trans- and cis-DONO using non-linear least-squares calculations. Synthetic spectra calculated using the new rovibrational constants obtained for both species reproduce the observed spectra very well. In addition, the infrared transitions of this study were used, together with previously published pure rotational transitions, to determine improved rotational and centrifugal distortion constants of the ground states of trans- and cis-DONO.  相似文献   

16.
The experimental equilibrium structure of silyl fluoride has been determined using new sets of accurate rotational constants that have recently been obtained by taking into account the most important interactions between the excited vibrational states. The equilibrium structure has also been calculated at the CCSD(T) level of theory with the cc-pVQZ+1 basis set (including corrections for the core correlation). The anharmonic force field up to semidiagonal quartic terms has been calculated at the MP2 level of theory and the equilibrium structure has been derived from the experimental rotational constants and the ab initio rovibrational interaction parameters. Finally, the average structure of both 28SiH3F and 28SiD3F has been reevaluated and used to derive the equilibrium structure. These structures are compared and the experimental structure is found to be in slight disagreement with the other ones. The preferred structure is obtained by calculating the median value of the different structures. The results are re(SiF)=1.5907 (9) Å, re(SiH)=1.4696 (13) Å, ∠e(HSiF)=108.32(15)°, and ∠e(HSiH)=110.60(14)°.  相似文献   

17.
The transient thiophosphenous fluoride FPS was produced by pyrolysis of 2.5% F2PSPF2 in Ar at 1300–1800°C. High-resolution (≥0.004 cm−1) Fourier transform infrared spectra of the a-type ν1 and b-type ν2 bands, centered respectively at 803.249 and 726.268 cm−1, were measured and fitted to rotational and quartic centrifugal distortion parameters. The millimeter-wave spectrum, essentially b-type, was measured between 300 and 370 GHz in the ground state and in the ν3 excited state for FP32S and in the ground state for FP34S. The frequencies were fitted to a Watson-type A-reduced Hamiltonian up to sextic distortion terms. High level ab initio calculations with large basis sets were performed on FPS and supported the first identification of its infrared and millimeter wave spectra. The calculated anharmonic force field provided precise ab initio rovibrational α constants which were combined with the experimental molecular parameters to determine an accurate equilibrium structure of the molecule: re(PS)=188.86 pm, re(PF)=158.70 pm, θ(FPS)=109.28°. The collision-controlled 1/e lifetime measured in a 10-Pa (1 : 20) F2PSPF2/Ar mixture was 2 s, more than two orders of magnitude larger than that of FPO under the same experimental conditions.  相似文献   

18.
The microwave spectra of the gauche conformer of perfluoro-n-butane, n-C4F10, of perfluoro-iso-butane, (CF3)3CF, and of tris(trifluoromethyl)methane, (CF3)3CH, have been observed and assigned. The rotational and centrifugal distortion constants for gauche n-C4F10 are: A = 1058.11750(7) MHz, B = 617.6832(1) MHz, C = 552.18794(1) MHz, ΔJ = 0.0257(5) kHz, δJ = 0.0052(3) kHz. A C-C-C-C dihedral angle, ω, of ∼55° has been determined. These values agree well with those obtained from a coupled cluster (CCSD/cc-PVTZ) calculation. The rotational and centrifugal distortion constants for iso-C4F10 and iso-C4HF9 are: Bo = 816.4519(4) MHz, DJ = 0.023(2) kHz, and Bo = 903.6985(25) MHz, DJ = 0.043(4) kHz, respectively. The dipole moment of iso-C4F10 and iso-C4HF9 have been measured and found to be 0.0338(8) and 1.69(9) D, respectively.  相似文献   

19.
Previous measurements of rotational spectrum of aziridine up to 1.85 THz have been supplemented by new data in 225-660 GHz frequency range. A total of 1465 transitions (915 of them are newly assigned ones) with maximum values of J = 59 and Kc = 50 were fit to a standard Watson Hamiltonian using the S- and A-reductions and the representations Ir and IIIr. Although aziridine is an asymmetric oblate top, the combination (A, IIIr) gives the worst results. From the point of view of the convergence of the Hamiltonian, the best results are obtained with the combination (S, IIIr). It is explained that the failure of the combination (A, IIIr) is due to the large value of the parameter σ=(2C-A-B)/(A-B) which makes some sextic centrifugal distortion constants much too large impeding the convergence of the Hamiltonian. It is also shown that the calculation of the centrifugal distortion constants from a force field is sometimes an ill-conditioned operation. Finally, the use of a non-reduced Hamiltonian (with six quartic centrifugal distortion constants) was successful in the particular case thanks to the method of predicate observations.  相似文献   

20.
Monodeuterated diacetylene (HCCCCD) and its 13C-substituted species H13CCCCD, HC13CCCD, HCC13CCD, and HCCC13CD were investigated by Fourier transform microwave spectroscopy. The D nuclear quadrupole splittings were almost completely resolved. For H13CCCCD hyperfine splittings caused by the anisotropic nuclear spin-spin interaction between the H and 13C nuclei were also observed. The analysis yielded rotational constants, centrifugal distortion constants, and the constants for the nuclear quadrupole coupling and anisotropic nuclear spin-spin interaction. The substitution structure of HCCCCD was calculated as follows: rs(C-H) = 1.056054(39) Å, rs(CC) = 1.208631(4) Å, rs(C-C) = 1.374117(6) Å, rs(CC) = 1.208116(4) Å, and rs(C-D) = 1.056231(17) Å, in the order of the arrangement of the bonds. A rough estimate of the equilibrium structure is also presented. The eQq constant for the deuterium nucleus is 0.2061(4) MHz. The anisotropic 13C-H spin-spin interaction constant was experimentally determined for the first time as b = −29.2(15) kHz, which is defined as the coefficient of (3I2zI3z − I2 · I3), where I2 and I3 denote the H and 13C nuclear spins, respectively, and I2z and I3z their components along the molecular axis. The observed b constant is not accounted for by the direct magnetic dipole-dipole interaction only, suggesting a significant contribution from indirect anisotropic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号