首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study a class of stochastic fractional partial differential equations of order α>1α>1 driven by a (pure jump) Lévy space–time white noise and a fractional noise. We prove the existence and uniqueness of the global mild solution by the fixed point principle under some suitable assumptions.  相似文献   

3.
The fundamental solutions for the fractional diffusion-wave equation   总被引:6,自引:0,他引:6  
The time fractional diffusion-wave equation is obtained from the classical diffusion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order 2β with 0 < β ≤ 1/2 or 1/2 < β ≤ 1, respectively. Using the method of the Laplace transform, it is shown that the fundamental solutions of the basic Cauchy and Signalling problems can be expressed in terms of an auxiliary function M(z;β), where z = |x|/tβ is the similarity variable. Such function is proved to be an entire function of Wright type.  相似文献   

4.
In this paper, we investigate the existence and multiplicity of positive solutions for nonlinear fractional differential equation boundary value problem:
  相似文献   

5.
We focus on a numerical scheme applied for a fractional oscillator equation in a finite time interval. This type of equation includes a complex form of left- and right-sided fractional derivatives. Its analytical solution is represented by a series of left and right fractional integrals and therefore is difficult in practical calculations. Here we elaborated two numerical schemes being dependent on a fractional order of the equation. The results of numerical calculations are compared with analytical solutions. Then we illustrate convergence and stability of our schemes.  相似文献   

6.
In this paper, we investigate the existence of positive solutions for the singular fractional boundary value problem: Dαu(t)+f(t,u(t),Dμu(t))=0, u(0)=u(1)=0, where 1<α<2, 0<μ?α−1, Dα is the standard Riemann-Liouville fractional derivative, f is a positive Carathéodory function and f(t,x,y) is singular at x=0. By means of a fixed point theorem on a cone, the existence of positive solutions is obtained. The proofs are based on regularization and sequential techniques.  相似文献   

7.
Some new weakly singular integral inequalities of Gronwall-Bellman type are established, which generalized some known weakly singular inequalities and can be used in the analysis of various problems in the theory of certain classes of differential equations, integral equations and evolution equations. Some applications to fractional differential and integral equations are also indicated.  相似文献   

8.
A strongly damped wave equation involving a delay of neutral type in its second order derivative is considered. It is proved that solutions decay to zero exponentially despite the fact that delays are, in general, sources of instability.  相似文献   

9.
In this paper, we deal with the following nonlinear fractional boundary value problem
where is the standard Riemann–Liouville fractional derivative. By means of lower and upper solution method and fixed-point theorems, some results on the existence of positive solutions are obtained for the above fractional boundary value problems.  相似文献   

10.
The purpose of this paper is to present some new fixed point theorems for mixed monotone operators with perturbation by using the properties of cones and a fixed point theorem for mixed monotone operators. As applications, we utilize the results obtained in this paper to study the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problems.  相似文献   

11.
12.
A space , which is proved to be a reproducing kernel space with simple reproducing kernel, is defined. The expression of its reproducing kernel function is given. Subsequently, a class of linear Volterra integral equation (VIE) with weakly singular kernel is discussed in the new reproducing kernel space. The reproducing kernel method of linear operator equation Au=f, which request the image space of operator A is and operator A is bounded, is improved. Namely, the request for the image space is weakened to be L2[a,b], and the boundedness of operator A is also not required. As a result, the exact solution of the equation is obtained. The numerical experiments show the efficiency of our method.  相似文献   

13.
Let $B^H$ be a fractional Brownian motion with Hurst index $H>\frac12$. In this paper, we prove the global existence and uniqueness of the equation $$ \begin{cases} ^CD_t^{\gamma}x(t)=f(x_t)+G(x_t)\frac{d}{dt}B^H(t),\ \ \ \ &t\in(0,T], \x(t)=\eta(t), \ \ \ \ \ &t\in[-r,0], \end{cases} $$ where $\max\{H,2-2H\}<\gamma<1$, $^CD_t^{\gamma}$ is the Caputo derivative, and $x_t\in \mathcal{C}_r=\mathcal{C}([-r,0],\mathbb{R})$ with $x_t(u)=x(t+u),u\in[-r,0]$. We also study the dependence of the solution on the initial condition.  相似文献   

14.
15.
This paper is devoted to the spectral analysis of the operators generated by differential equations of second order with fractional derivatives in lower terms and boundary conditions of Sturm–Liouville type.  相似文献   

16.
In this paper, we investigate the solutions for a generalized fractional diffusion equation that extends some known diffusion equations by taking a spatial time-dependent diffusion coefficient and an external force into account, which subjects to the natural boundaries and the generic initial condition. We obtain explicit analytical expressions for the probability distribution and study the relation between our solutions and those obtained within the maximum entropy principle by using the Tsallis entropy.  相似文献   

17.
In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give the sufficient condition that guarantees fractional viability of a locally closed set with respect to nonlinear function. As an example we discuss positivity of solutions, particularly in linear case.  相似文献   

18.
This article considers the dynamic equation of a reduced model for thin-film micromagnetics deduced by A. DeSimone, R.V. Kohn and F. Otto in [A. DeSimone, R.V. Kohn, F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002) 1-53]. To derive the existence of weak solutions under periodical boundary condition, the authors first prove the existence of smooth solutions for the approximating equation, then prove the convergence of the viscosity solution when the viscosity term vanishes, which implies the existence of solutions for the original equation.  相似文献   

19.
A new class of fractional differential equations with the Riesz–Caputo derivative is proposed and the physical meaning is introduced in this paper. The boundary value problem is investigated under some conditions. Leray–Schauder and Krasnoselskii’s fixed point theorems in a cone are adopted. Existence of positive solutions is provided. Finally, two examples with numerical solutions are given to support theoretical results.  相似文献   

20.
Analysis of a system of fractional differential equations   总被引:2,自引:0,他引:2  
We prove existence and uniqueness theorems for the initial value problem for the system of fractional differential equations , where Dα denotes standard Riemann-Liouville fractional derivative, 0<α<1, and A is a square matrix. The unique solution to this initial value problem turns out to be , where Eα denotes the Mittag-Leffler function generalized for matrix arguments. Further we analyze the system , , 0<α<1, and investigate dependence of the solutions on the initial conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号