首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compute the emission amplitude for the collective emission from a sphere of identical atoms in the scalar photon theory for both the cases of the complex kernel (i.e. including virtual photons) and real kernel. We explicitly show that the single mode theory based on the real kernel neglects the effects of the different decay rates and frequency shifts associated with the eigenfunctions belonging to the same angular index but with different radial indices. We show that these effects modify, for k0R?1, both the time dependence of the emission amplitude and its angular distribution, in clear contradiction to the assertions made by the Comment's authors.  相似文献   

2.
Min Xie 《Optics Communications》2009,282(9):1819-1824
We investigate quantum interferences in coherent population trapping of a cold double Λ-type four-level atomic system driven by two counterpropagating laser fields. We study both decoherence and enhanced-coherence actions resulting from the multi-transition pathways in building up the trapping state, and analyze the system operating with and without external coherences in various configurations of the atomic dipole moments.  相似文献   

3.
This paper studies manly spatial evolution of gain without inversion (GWI) and the Rabi frequency E (intensity ?p) of the probe field in an open V-type three-level inversionless lasing system with spontaneously generated coherence (SGC) for both cases with and without Doppler broadening. We found that: (1) Varying sizes of SGC strength (measured by angle θ), atomic exit rate (r0) and ratio (S) of the atomic injection rates has remarkable effect on spatial evolutions of GWI and E (?p). This effect in the case with Doppler broadening is similar to but weaker than that in the case without Doppler broadening. (2) Regardless of that Doppler broadening is present or not, GWI and E (?p) increase with increase of θ, r0 and S in certain value ranges of θ, r0 and S; in the case with SGC we can obtain GWI and E (?p) much larger than those in the case without SGC, while by choosing values of γ0 and S, in the open system we can obtain LWI gain and E (?p) much larger than those in the corresponding closed system. (3) The propagation distance in which GWI exists in the case with Doppler broadening is longer than that in the case without Doppler broadening; in the case without Doppler broadening, we can obtain larger GWI than that in the case with Doppler broadening; but in the case with Doppler broadening, we can obtain larger E (?p) than that in the case without Doppler broadening.  相似文献   

4.
A symmetric four-level closed-loop ? type (the diamond-shape) atomic system driven by four coherent optical fields is investigated. The system shows rich quantum interference and coherence features. When symmetry of the system is broken, interesting phenomena such as single and double-dark resonances appear. As a result, the controllable double electromagnetically induced transparency (EIT) effect is generated, which will facilitate the implementation of quantum phase gate (QPG) operation.  相似文献   

5.
We use wavelength tunable femtosecond pulses to measure intrinsic (simultaneous) two-photon absorption (2PA) and three-photon absorption (3PA) molecular cross section in two series of π-conjugated dendrimers built of identical 4,4′-bis(diphenylamino) stilbene (BDPAS) and 4,4′-bis(diphenylamino) distyrylbenzene (BDPADSB) repeat units. Record large 2PA cross sections, σ2=10−46 cm4 s are obtained for the largest second-generation BDPAS-based dendrimer, as well as zeroth-generation 4-arm BDPADSB-based dendrimer. In both series, maximum 2PA cross section increases nonlinearly with the number of π-electrons, whereas for higher generations this dependence turns to linear one. 3PA cross section also increases nonlinearly with the size of the system in the series of BDPAS-based molecules, amounting a record large value, σ3=10−79 cm6 s2, for the largest, second-generation dendrimer. We interpret these results in terms of direct inter-branch conjugation, which facilitates cooperative enhancement of the nonlinear-optical response. We propose a simple model which allows us to determine the effective size of coherent domains (extent of conjugation), which, in turn, determines the optimum dendrimer size for most efficient nonlinear response.  相似文献   

6.
When a gauge field interacts with a quantum condensed matter system, at first order of the gauge field it couples to the current operator of the electrons. Higher orders of the gauge field couple to electrons through other operators such as the stress tensor, etc. On the other hand, when one performs a measurement on a quantum system, not only the current operator, but also stress tensor operator of the electrons, etc. are hidden in the measurement, as they contribute to the gauge invariant current. We formulate a general problem of nonlinear optical response of the gauge invariant currents in presence of nonlinear couplings. We show that the new couplings along with new responses arising from field current have a very simple structure which can be formulated as time ordered multi-particle correlation functions. We also obtain their Lehman representation and thereby show that one need not use non-equilibrium formulations to deal with them. These new correlation functions suggest that in nonlinear optical response many new processes are possible. The experimental detection of the new terms in the current operator, and application corresponding multi-photon processes needs further theoretical and experimental investigations.  相似文献   

7.
We find eigenmodes of an integral equation describing N 2-level atoms interacting with a scalar field, one atom being initially excited. Neglect of virtual field quanta would replace the correct kernel by its real part. This has serious consequences both for small and large samples.  相似文献   

8.
Amit Verma 《Physics letters. A》2009,373(16):1421-1428
Recently we have shown that the reduction of the Carruthers-Nieto symmetric quantum phase fluctuation parameter (U) with respect to its coherent state value corresponds to an antibunched state, but the converse is not true. Consequently reduction of U is a stronger criterion of nonclassicality than the lowest order antibunching. Here we have studied the possibilities of reduction of U in intermediate states by using the Barnett-Pegg formalism. We have shown that the reduction of phase fluctuation parameter U can be seen in different intermediate states, such as binomial state, generalized binomial state, hypergeometric state, negative binomial state, and photon added coherent state. It is also shown that the depth of nonclassicality can be controlled by various parameters related to intermediate states. Further, we have provided specific examples of antibunched states, for which U is greater than its Poissonian state value.  相似文献   

9.
The nonclassical squeezing effect emerging from a nonlinear coupling model (generalized Jaynes–Cummings model) of a two-level atom interacting resonantly with a bimodal cavity field via two-photon transitions is investigated in the rotating wave approximation. Various Bloch coherent initial states (rotated states) for the atomic system are assumed, i.e., (i) ground state, (ii) excited state, and (iii) linear superposition of both states. Initially, the atomic system and the field are in a disentangled state, where the field modes are in Glauber coherent states via Poisson distribution. The model is numerically tested against simulations of time evolution of the based Heisenberg uncertainty relation variance and Shannon information entropy squeezing factors. The quantum state purity is computed for the three possible initial states and used as a criterion to get information about the entanglement of the components of the system. Analytical expression of the total density operator matrix elements at t > 0 shows, in fact, the present nonlinear model to be strongly entangled, where each of the definite initial Bloch coherent states is reduced to statistical mixtures. Thus, the present model does not preserve the modulus of the Bloch vector.  相似文献   

10.
We investigate two imaging schemes, lensless system and 2-f system which are used to implement ghost diffraction. It is shown that the two schemes have similar intensity fluctuation correlation functions which both realize the function of the Fourier-transform imaging, and the diffraction pattern is in agreement with that in the classical wave optics. The difference of the imaging visibility in the two systems is also discussed.  相似文献   

11.
In this paper, we investigate tunable control of the group velocity of a weak probe field propagating through an f-deformed Bose-Einstein condensate of Λ-type three-level atoms beyond the rotating wave approximation. For this purpose, we use an f-deformed generalization of an effective two-level quantum model of the three-level Λ-configuration without the rotating wave approximation in which the Gardiner’s phonon operators for Bose-Einstein condensate are deformed by an operator-valued function, , of the particle-number operator . We consider the collisions between the atoms as a special kind of f-deformation where the collision rate κ is regarded as the deformation parameter. We demonstrate the enhanced effect of subluminal and superluminal propagation based on electromagnetically induced transparency and electromagnetically induced absorption, respectively. In particular, we find that (i) the absorptive and dispersive properties of the deformed condensate can be controlled effectively in the absence of the rotating wave approximation by changing the deformation parameter κ, the total number of atoms and the counter-rotating terms parameter λ, (ii) by increasing the values of λ, κ and η = 1/N, the group velocity of the probe pulse changes, from subluminal to superluminal and (iii) beyond the rotating wave approximation, the subluminal and superluminal behaviors of the probe field are enhanced.  相似文献   

12.
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the cases of (I) two independent bosonic baths and (II) one common bath. We find that in the case (II) the existence of a decoherence-free subspace (DFS) makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces.  相似文献   

13.
We calculated and studied the quantum coherence effects of a degenerate transition Fg = 3 ↔ Fe = 2 system interacting with a weak linearly polarized (with σ± components) probe light and a strong linearly polarized (with σ± components) coupling field. Due to the competition between the drive Rabi frequency and the Zeeman splitting, electromagnetically induced transparency (EIT) and electromagnetically induced absorption (EIA) are appeared at the different values of applied magnetic field in both cases that the Zeeman splitting of excited state Δe is smaller than the Zeeman splitting of ground state Δg (i.e., Δe < Δg) and Δe > Δg. It is shown that the resonance is broader and contrasts are higher for Δe < Δg than that for Δe > Δg at the same Rabi frequencies of probe and coupling fields.  相似文献   

14.
Cooperative emission from a sphere of N two-level atoms excited by a short pulse is shown to have a time-dependent angular distribution, with the possibility of reversal in the dominant direction of emission. This is a result of the different values of the frequency shifts and decay rates associated with the various collective eigenmodes of the atomic system obtained in a scalar photon model.  相似文献   

15.
A rich variety of angular distributions in the cooperative emission from a sphere of inverted N two-level atoms are shown to result from the eigenstructure of the complex kernel of scalar photon theory exp(ik0R)/(ik0R). This angular distribution is sensitive both to the size of the sphere and to the instant of observation of the emission.  相似文献   

16.
We have studied a higher-order squeezing and a higher-order sub-Poissonian photon statistics in photon-added coherent states. We obtained analytic forms of the degree of higher-order squeezing and the degree of higher-order sub-Poissonian statistics. We show that the photon-added coherent state |α,m〉 exhibits both higher-order squeezing and higher-order sub-Poissonian character. For two different types of higher-order squeezing, the degree of squeezing becomes bigger when the added photon number is increased. In single-photon-added coherent state, the degree of squeezing depends upon the order of squeezing N. When N is increased, the degree of squeezing becomes bigger in the Hong-Mandel-type higher-order squeezing but becomes smaller in the Hillery-type higher-order squeezing. Also, the higher-order sub-Poissonian character is more pronounced than the usual sub-Poissonian character in the single-photon-added coherent state.  相似文献   

17.
A feasible scheme is presented to generate a generalized superposition of displaced squeezed states, cosθ|α,z〉±sinθ|-α,z〉, in a single mode of the electromagnetic field inside a microwave cavity. The scheme employs a two-level (Rydberg) atom driven by an external classical field. The success probability and the interaction time of such generation are also considered.  相似文献   

18.
By analytically solving the master equation, we examine entanglement dynamics of the two-qubit spin system coupled via the XY interaction and in the presence of population relaxation. We found that the entanglement dynamical behaviors are very sensitive to different initialized states. Particularly, for initial states ?=(|01〉〈01|+|10〉〈10|)/2 and ?=(|00〉〈00|+|11〉〈11|)/2, a combination of the XY coupling with the population relaxation can even be used to enhance the entanglement. Moreover, we show that among different initially separable states, ?=|01〉〈01| and ?=|10〉〈10| are more robust in generating pairwise entanglement.  相似文献   

19.
In this paper, we discuss the effects of spatial mode function in an one-photon micromaser in the presence of two-atom events. It is shown that two-atom events allow us a possibility to study the effects of different cavity eigenmodes in a micromaser. We find that squeezing properties of the radiation field depend upon the parity (odd or even) and order (lower or higher) of cavity eigenmodes. For example, squeezing can be obtained for odd-order cavity eigenmodes which completely vanishes for even-order modes. Our results also show that effects similar to self-induced transparency are never obtained in the presence of two-atom events. Finally, we consider the effect of pump fluctuations and cavity losses in our system.  相似文献   

20.
We consider a model two-mode coupled-photon system and verify that the photon distribution for this system is exactly super-Poissonian. We calculate the Glauber–Sudarshan diagonal P representation for both the individual photon subsystem and the complete photon–photon complex. We present the detailed analysis on the threshold temperature of the nonclassical behavior for the both cases. We discuss the effect of the interaction between two photons on the threshold temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号