首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The main object of this paper is to investigate several general families of hypergeometric polynomials and their associated multiple integral representations. By suitably specializing our main results, the corresponding integral representations are deduced for such familiar classes of hypergeometric polynomials as (for example) the generalized Bedient polynomials and the generalized Cesàro polynomials. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization relationship for the product of two different members of the associated family of hypergeometric polynomials.  相似文献   

2.
A new result for integrals involving the product of Bessel functions and Associated Laguerre polynomials is obtained in terms of the hypergeometric function. Some special cases of the general integral lead to interesting finite and infinite series representations of hypergeometric functions.  相似文献   

3.
The main object of this paper is to investigate several general families of hyper-geometric polynomials and their associated multiple integral representations. By suitably specializing our main results, the corresponding integral representations are deduced for such familiar classes of hypergeometric polynomials as (for example) the generalized Bedient polynomials of the first and second kinds. Each of the integral representations, which are derived in this paper, may be viewed also as a linearization relationship for the product of two different members of the associated family of hypergeometric polynomials.  相似文献   

4.
In this paper, extensions of several relations linking differences of bivariate discrete orthogonal polynomials and polynomials themselves are given, by using an appropriate vector–matrix notation. Three-term recurrence relations are presented for the partial differences of the monic polynomial solutions of admissible second order partial difference equation of hypergeometric type. Structure relations, difference representations as well as lowering and raising operators are obtained. Finally, expressions for all matrix coefficients appearing in these finite-type relations are explicitly presented for a finite set of Hahn and Kravchuk orthogonal polynomials.  相似文献   

5.
In this paper authors prove a general theorem on generating relations for a certain sequence of functions. Many formulas involving the families of generating functions for generalized hypergeometric polynomials are shown here to be special cases of a general class of generating functions involving generalized hypergeometric polynomials and multiple hypergeometric series of several variables. It is then shown how the main result can be applied to derive a large number of generating functions involving hypergeometric functions of Kampé de Fériet, Srivastava, Srivastava-Daoust, Chaundy, Fasenmyer, Cohen, Pasternack, Khandekar, Rainville and other multiple Gaussian hypergeometric polynomials scattered in the literature of special functions.  相似文献   

6.
A general Laplace transform and its inverse and their generalizations are considered in this article. This inverse contains the density functions of quadratic expressions in nonsingular as well as singular normal variables and a non-central version of linear functions of gamma variables, among others. Various representations of the inverse in power series, in gamma series, in Laguerre polynomials, in hypergeometric functions and in zonal polynomials are also discussed.  相似文献   

7.
The authors investigate several families of double-series identities as well as their (known or new) consequences involving various hypergeometric functions in one and two variables. A number of associated generating-function relationships, involving certain classes of hypergeometric polynomials, are also considered.  相似文献   

8.
Inequalities satisfied by the zeros of the solutions of second-order hypergeometric equations are derived through a systematic use of Liouville transformations together with the application of classical Sturm theorems. This systematic study allows us to improve previously known inequalities and to extend their range of validity as well as to discover inequalities which appear to be new. Among other properties obtained, Szegő's bounds on the zeros of Jacobi polynomials for , are completed with results for the rest of parameter values, Grosjean's inequality (J. Approx. Theory 50 (1987) 84) on the zeros of Legendre polynomials is shown to be valid for Jacobi polynomials with |β|1, bounds on ratios of consecutive zeros of Gauss and confluent hypergeometric functions are derived as well as an inequality involving the geometric mean of zeros of Bessel functions.  相似文献   

9.
Recently, Srivastava, Özarslan and Kaanoglu have introduced certain families of three and two variable polynomials, which include Lagrange and Lagrange-Hermite polynomials, and obtained families of two-sided linear generating functions between these families [H.M. Srivastava, M.A. Özarslan, C. Kaanoglu, Some families of generating functions for a certain class of three-variable polynomials, Integr. Transform. Spec. Funct. iFirst (2010) 1-12]. The main object of this investigation is to obtain new two-sided linear generating functions between these families by applying certain hypergeometric transformations. Furthermore, more general families of bilinear, bilateral, multilateral finite series relationships and generating functions are presented for them.  相似文献   

10.
We find the discriminants, Galois groups, and prove the irreducibility of certain hypergeometric polynomials, which are closely related to modular forms and supersingular elliptic curves. 2000 Mathematics Subject Classification Primary—33C45; Secondary—11F11  相似文献   

11.
We obtain an explicit expression for the Sobolev-type orthogonal polynomials {Qn} associated with the inner product
, where p(x) = (1 − x)(1 + x)β is the Jacobi weight function, ,β> − 1, A1,B1,A2,B20 and p, q P, the linear space of polynomials with real coefficients. The hypergeometric representation (6F5) and the second-order linear differential equation that such polynomials satisfy are also obtained. The asymptotic behaviour of such polynomials in [−1, 1] is studied. Furthermore, we obtain some estimates for the largest zero of Qn(x). Such a zero is located outside the interval [−1, 1]. We deduce his dependence of the masses. Finally, the WKB analysis for the distribution of zeros is presented.  相似文献   

12.
In some recent investigations involving differential operators for generalized Laguerre polynomials, Herman Bavinck (1996) encountered and proved a certain summation formula for the classical Laguerre polynomials. The main object of this sequel to Bavinck's work is to prove a generalization of this summation formula for a class of hypergeometric polynomials. The demonstration, which is presented here in the general case, differs markedly from the earlier proof given for the known special case. The general summation formula is also applied to derive the corresponding result for the classical Jacobi polynomials.

  相似文献   


13.
The main object of this paper is to construct a systematic investigation of a multivariable extension of the extended Jacobi polynomials and give some relations for these polynomials. We derive various families of multilinear and multilateral generating functions. We also obtain relations between the polynomials extended Jacobi polynomials and some other well-known polynomials. Other miscellaneous properties of these general families of multivariable polynomials are also discussed. Furthermore, some special cases of the results are presented in this study.  相似文献   

14.
The n-point correlation functions introduced by Bloch and Okounkov have already found several geometric connections and algebraic generalizations. In this note we formulate a q,t-deformation of this n-point function. The key operator used in our formulation arises from the theory of Macdonald polynomials and affords a vertex operator interpretation. We obtain closed formulas for the n-point functions when n = 1,2 in terms of the basic hypergeometric functions. We further generalize the q,t-deformed n-point function to more general vertex operators.  相似文献   

15.
Let K be a field and L:K[x]→K[x] be a linear operator acting on the ring of polynomials in x over the field K. We provide a method to find a suitable basis {bk(x)} of K[x] and a hypergeometric term ck such that is a formal series solution to the equation L(y(x))=0. This method is applied to construct hypergeometric representations of orthogonal polynomials from the differential/difference equations or recurrence relations they satisfied. Both the ordinary cases and the q-cases are considered.  相似文献   

16.
许艳 《中国科学:数学》2014,44(4):409-422
本文利用渐近于Gauss函数的函数类?,给出渐近于Hermite正交多项式的一类Appell多项式的构造方法,使得该序列与?的n阶导数之间构成了一组双正交系统.利用此结果,本文得到多种正交多项式和组合多项式的渐近性质.特别地,由N阶B样条所生成的Appell多项式序列恰为N阶Bernoulli多项式.从而,Bernoulli多项式与B样条的导函数之间构成了一组双正交系统,且标准化之后的Bernoulli多项式的渐近形式为Hermite多项式.由二项分布所生成的Appell序列为Euler多项式,从而,Euler多项式与二项分布的导函数之间构成一组双正交系统,且标准化之后的Euler多项式渐近于Hermite多项式.本文给出Appell序列的生成函数满足的尺度方程的充要条件,给出渐近于Hermite多项式的函数列的判定定理.应用该定理,验证广义Buchholz多项式、广义Laguerre多项式和广义Ultraspherical(Gegenbauer)多项式渐近于Hermite多项式的性质,从而验证超几何多项式的Askey格式的成立.  相似文献   

17.
In this paper, a general method to express explicitly connection coefficients between two Boas-Buck polynomial sets is presented. As application, we consider some generalized hypergeometric polynomials, from which we derive some well-known results including duplication and inversion formulas.  相似文献   

18.
It has been shown in Ferreira et al. [Asymptotic relations in the Askey scheme for hypergeometric orthogonal polynomials, Adv. in Appl. Math. 31(1) (2003) 61–85], López and Temme [Approximations of orthogonal polynomials in terms of Hermite polynomials, Methods Appl. Anal. 6 (1999) 131–146; The Askey scheme for hypergeometric orthogonal polynomials viewed from asymptotic analysis, J. Comput. Appl. Math. 133 (2001) 623–633] that the three lower levels of the Askey table of hypergeometric orthogonal polynomials are connected by means of asymptotic relations. In Ferreira et al. [Limit relations between the Hahn polynomials and the Hermite, Laguerre and Charlier polynomials, submitted for publication] we have established new asymptotic connections between the fourth level and the two lower levels. In this paper, we continue with that program and obtain asymptotic expansions between the fourth level and the third level: we derive 16 asymptotic expansions of the Hahn, dual Hahn, continuous Hahn and continuous dual Hahn polynomials in terms of Meixner–Pollaczek, Jacobi, Meixner and Krawtchouk polynomials. From these expansions, we also derive three new limits between those polynomials. Some numerical experiments show the accuracy of the approximations and, in particular, the accuracy in the approximation of the zeros of those polynomials.  相似文献   

19.
Para‐orthogonal polynomials derived from orthogonal polynomials on the unit circle are known to have all their zeros on the unit circle. In this note we study the zeros of a family of hypergeometric para‐orthogonal polynomials. As tools to study these polynomials, we obtain new results which can be considered as extensions of certain classical results associated with three term recurrence relations and differential equations satisfied by orthogonal polynomials on the real line. One of these results which might be considered as an extension of the classical Sturm comparison theorem, enables us to obtain monotonicity with respect to the parameters for the zeros of these para‐orthogonal polynomials. Finally, a monotonicity of the zeros of Meixner‐Pollaczek polynomials is proved.  相似文献   

20.
The main object of the present paper is to derive various classes of double-series identities and to show how these general results would apply to yield some (known or new) reduction formulas for the Appell, Kampé de Fériet, and Lauricella hypergeometric functions of several variables. A number of closely-related linear generating functions for the classical Jacobi polynomials are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号