首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this paper, a second-order implicit-explicit upwind algorithm has been developed for three-dimensional Parabolized Navier-Stokes (PNS) equations. The agreement between the results of the new upwind algorithm and those of the implicit upwind algorithm and its ability in marching a long distance along the streamwise direction have been shown for the supersonic viscous flow past a sphere-cone body. The CPU time is greatly reduced. The project supported by the National Natural Science Foundation of China  相似文献   

2.
A study is made of a chemically nonequilibrium flow in local regions near cold walls. It is found that in this case the chemically reactions can take place only on a catalytic surface, and the gas can be regarded as a binary mixture of atoms and molecules. As an example, a study is made of the aerodynamic heating of a small step on the surface of a plate in the case when the flow past the plate is described in the first approximation when the Reynolds number tends to infinity by the Navier-Stokes equations for an incompressible gas. It is found that the presence of the step increases the drag of this section of the body, for a noncatalytic surface leads to an additional heating of it, and for a catalytic surface weakens its catalytic activity and, therefore, reduces the heating of the step.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 137–144, May–June, 1984.I thank V. N. Gusev for helpful discussion of the results of this paper.  相似文献   

3.
A new upwind finite element scheme for the incompressible Navier-Stokes equations at high Reynolds number is presented. The idea of the upwind technique is based on the choice of upwind and downwind points. This scheme can approximate the convection term to third-order accuracy when these points are located at suitable positions. From the practical viewpoint of computation, the algorithm of the pressure Poisson equation procedure is adopted in the framework of the finite element method. Numerical results of flow problems in a cavity and past a circular cylinder show excellent dependence of the solutions on the Reynolds number. The influence of rounding errors causing Karman vortex shedding is also discussed in the latter problem.  相似文献   

4.
The paper presents a modification to two well-known non-iterative implicit finite-difference schemes for confined and unconfined boundary-layer-type flows. The modification aims at improving the accuracy of these schemes by reducing the adverse effect of linearization, which is inherent in both of them. Using the present improved scheme, the same level of accuracy of the results could be obtained with large mesh sizes in the flow direction (coarse grid). The modification is done by adding a local iterative procedure at each computational step in the flow (marching) direction. As an example, to demonstrate the proposed modification, the simple case of developing forced convection in the entry region of concentric annuli has been considered. The results are presented, which prove the applicability of the proposed modification and show its effect on the obtained accuracy and on the required computer time.  相似文献   

5.
6.
In this paper, we propose a new Lagrangian lattice Boltzmann method (LBM) for simulating the compressible flows. The new scheme simulates fluid flows based on the displacement distribution functions. The compressible flows, such as shock waves and contact discontinuities are modelled by using Lagrangian LBM. In this model, we select the element in the Lagrangian coordinate to satisfy the basic fluid laws. This model is a simpler version than the corresponding Eulerian coordinates, because the convection term of the Euler equations disappears. The numerical simulations conform to classical results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
从迎风紧致逼近^[1]出发,提出数值求解可压Navier-Stokes方程的一种高精度的数值方法。利用Steger-Warming的通量分裂技术^[2]将守恒型方程中的流通向量分裂成两部分,在此基础上据风向构造逼近于无粘项的三阶迎风紧致有限差分格式。对方程中的粘性部分采用通常的二阶差分逼近。所建立的差分格式被用来数值求解了三维粘性绕流问题。  相似文献   

10.
V. I. Sakharov 《Fluid Dynamics》2007,42(6):1007-1016
The results of numerical simulation are presented for thermally and chemically nonequilibrium air plasma flows in a plasmatron discharge channel and underexpanded dissociated and partially ionized air jets flowing past a cylindrical model with a blunt leading edge and cooled copper surface under the experimental conditions realized in a VGU-4 100 kW induction plasmatron (Institute for Problems in Mechanics of the Russian Academy of Sciences) (see, for example, [1, 2]). The nonequilibrium excitation of the vibrational degrees of freedom of the molecules in the modal approximation and the difference between the electron and translational heavy-particle temperatures are taken into account in the calculations. The calculated data on the heat transfer and pressure at the stagnation point are compared with the results obtained within the framework of the thermally equilibrium model. Comparison with the experimental data obtained in the Institute for Problem in Mechanics of the Russian Academy of Sciences (Laboratory for interaction between plasma and radiation and materials) and kindly provided for comparison purposes gives satisfactory agreement.  相似文献   

11.
In implicit upwind methods for the solution of linearized Euler equations, one of the key issues is to balance large time steps, leading to a fast convergence behavior, and small time steps, needed to sufficiently resolve relevant flow features. A time step is determined by choosing a Courant–Friedrichs–Levy (CFL) number in every iteration. A novel CFL evolution strategy is introduced and compared with two existing strategies. Numerical experiments using the adaptive multiscale finite volume solver QUADFLOW demonstrate that all three CFL evolution strategies have their advantages and disadvantages. A fourth strategy aiming at reducing the residual as much as possible in every time step is also examined. Using automatic differentiation, a sensitivity analysis investigating the influence of the CFL number on the residual is carried out confirming that, today, CFL control is still a difficult and open problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Shock slip-relations for thermal and chemical nonequilibrium flows   总被引:1,自引:0,他引:1  
This paper appears to be the first where the multi-temperature shock slip-relations for the thermal and chemical nonequilibrium flows are derived. The derivation is based on analysis of the influences of thermal nonequilibrium and viscous effects on the mass, momentum and emergy flux balance relations at the shock wave. When the relaxation times for all internal energy modes tend to zero, the multi-tmperature shock slip-relations are converted into single-temperature ones for thermal equilibrium flows. The present results can be applied to flow over vehicles of different geometries with or without angles of attack. In addition, the present single-temperature shock slip-relations are compared with those in the literature, and some defects and limitations in the latter are clarified. The project supported by the National Natural Science Foundation of China and the National Defence Science and Industry Commission of China.  相似文献   

13.
Dexun  Fu  Yanwen  Ma 《Acta Mechanica Sinica》1986,2(2):100-108
A new scheme for solving the compressible Navier-Stokes equations is developed. For the inviscid portion of the equations the single step scheme used by the authors is factored according to the sign of the eigenvalues of Jacobian matrix. For the viscous portion of the equations a scheme corrected with operator addition is factored too. The scheme obtained has second order accuracy in time and in space and is used to solve two-dimensional problem. The numerical results of 2-D shock wave-boundary layer interaction are compared with experimental data.  相似文献   

14.
基于混合网格Navier-Stokes方程的并行隐式计算方法研究   总被引:2,自引:0,他引:2  
针对结构网格很难处理复杂外形和非结构网格无法计算具有边界层的粘性流动的缺点,发展了基于混合网格格点的隐式算法,成功地解决了在工程应用中难于处理的复杂外形粘性流场计算和效率问题。同时针对大规模的工程问题,发展了基于MPI通信技术的染色分层通讯并行计算方法。其中空间离散采用基于Roe格式发展的三阶迎风HLLEW(Harten-Lax-Van Leer-Einfeldt-Wada)或AUSM格式,湍流模型采用k??两方程湍流模型,时间推进考虑到LU-SGS并行等效较困难则采用基于DP-LUR(Data-Parallel Lower-Upper Relaxation)格式的隐式算法,计算CFL数可取到105量级,从2个到128个CPU的并行加速效率都保持在90%以上,大大提高了计算效率。算例对标模M6机翼模型流场进行计算,验证了方法的可靠性;然后对标模DLR-F6翼身组合体进行混合网格粘性与无粘计算结果进行比较,进一步验证混合网格方法;最后计算了DLR-WBNP外挂发动机翼身组合体模型,准确模拟了外挂和超临界机翼的相互干扰流动问题,采用4 CPU 16 CORE到24 CPU 96 CORE,2000步计算时间都不超...  相似文献   

15.
Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them,the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation UΔU. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term DPand the velocity-difference dissipation term in the momentum equation D~(ρU)to the order of O(c~(-1))and O(c~0) can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme,TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into allspeed compressible flow solvers.  相似文献   

16.
17.
Three-dimensional, compressible, internal flow solutions obtained using a thin-layer Navier-Stokes code are presented. The code, formulated by P.D. Thomas, is based on the Beam-Warming implicit factorization scheme; the boundary conditions also are formulated implicitly. Turbulent flow is treated through the use of the Baldwin-Lomax two-layer, algebraic eddy viscosity model. Steady-state solutions are obtained by solving numerically the time-dependent equations from given initial conditions until the time-dependent terms become negligible. The configuration considered is a rectangular cross-section, S-shaped centreline diffuser duct with an exit/inlet area ratio of 2.25. The Mach number at the duct entrance is 0.9, with a Reynolds number of 5.82 × 105. Convergence to the final results required about 2700 time steps or 11 hours of CPU time on our CRAY-1M computer. The averaged residuals were reduced by about two orders of magnitude during the computations. Several regions of separated flow exist within the diffuser. The separated flow region on the upper wall, downstream of the second bend, is by far the largest and extends to the exit plane.  相似文献   

18.
A new grid‐free upwind relaxation scheme for simulating inviscid compressible flows is presented in this paper. The non‐linear conservation equations are converted to linear convection equations with non‐linear source terms by using a relaxation system and its interpretation as a discrete Boltzmann equation. A splitting method is used to separate the convection and relaxation parts. Least squares upwinding is used for discretizing the convection equations, thus developing a grid‐free scheme which can operate on any arbitrary distribution of points. The scheme is grid free in the sense that it works on any arbitrary distribution of points and it does not require any topological information like elements, faces, edges, etc. This method is tested on some standard test cases. To explore the power of the grid‐free scheme, solution‐based adaptation of points is done and the results are presented, which demonstrate the efficiency of the new grid‐free scheme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem. The project supported by the National Natural Science Foundation of China under Contract No. 59576007 and 19572038  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号