首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the predominant N2O source from Antarctic sea animal colonies.  相似文献   

2.
Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios.  相似文献   

3.
The N2O and N2 fluxes emitted from a temperate UK grassland soil after fertiliser application (equivalent to 25 and 75 kg N ha(-1)) were simultaneously measured, using a new automated soil incubation system, which replaces soil atmosphere (N2 dominated) with a He+O2 mixture. Dual isotope and isotopomer ratios of the emitted N2O were also determined. Total N2O and N2 fluxes were significantly lower (P<0.001) in the control (0 kg N) than in the 25 and 75 kg N treatments. The total N2O flux was significantly higher (P<0.001) in the 75 kg N than in the 25 kg N treatment. The general patterns of N2O and N2 fluxes were similar for both fertiliser treatments. The total gaseous N loss in the control treatment was nearly all N2, whereas in the fertiliser treatment more N2O than N2 was emitted from the soil. The ratio N2O/N2 fluxes as measured during the experiment suggested three phases in N2O production, in phase 1 nitrification>denitrification, in phase 2 denitrification>nitrification, and in phase 3 denitrification (and total denitrification)>nitrification. Dual delta15N and delta18O isotope and isotopomer (delta15Nalpha and delta15Nbeta) value ratios of emitted N2O also pointed towards an increasing dominance of the production of N2O by denitrification and total denitrification. The site preference value from the soil-emitted N2O was lower than the troposphere value. This confirmed that the enhanced troposphere N2O site preference could result from back injection of N2O from the stratosphere. The measurements of N2O/N2 flux ratio and the isotopic content of emitted N2O pointed, independently, to similar temporal trends in N2O production processes after fertiliser application to grassland soil. This confirmed that both measurements are suitable diagnostic tools to study the N2O production process in soils.  相似文献   

4.
The influence of flooding on N2O fluxes, denitrification rates, dual isotope (delta18O and delta15N) and isotopomer (1delta15N and 2delta15N) ratios of emitted N2O from estuarine intertidal zones was examined in a laboratory study using tidal flooding incubation chambers. Five replicate soil cores were collected from two differently managed intertidal zones in the estuary of the River Torridge (North Devon, UK): (1) a natural salt marsh fringing the estuary, and 2 a managed retreat site, previous agricultural land to which flooding was restored in summer 2001. Gas samples from the incubated soil cores were collected from the tidal chamber headspaces over a range of flooding conditions, and analysed for the delta18O, delta15N, 1delta15N and 2delta15N values of the emitted N2O. Isotope signals did not differ between the two sites, and nitrate addition to the flooding water did not change the isotopic content of emitted N2O. Under non-flooded conditions, the isotopic composition of the emitted N2O displayed a moderate variability in delta18O and 2delta15N delta values that was expected for microbial activity associated with denitrification. However, under flooded conditions, half of the samples showed strong and simultaneous depletions in 1delta15N and delta18O values, but not in 2delta15N. Such an isotope signal has not been reported in the literature, and it could point towards an unidentified N2O production pathway. Its signature differed from denitrification, which was generally the N2O production pathway in the salt marsh and the managed retreat site.  相似文献   

5.
The bacterial denitrification method for isotopic analysis of nitrate using N(2)O generated from Pseudomonas aureofaciens may overestimate delta(15)N values by as much as 1-2 per thousand for samples containing atmospheric nitrate because of mass-independent (17)O variations in such samples. By analyzing such samples for delta(15)N and delta(18)O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct delta(15)N values because oxygen in N(2)O generated by P. chlororaphis is primarily derived from H(2)O. The difference between the apparent delta(15)N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent (17)O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different delta(18)O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N(2)O derived from the nitrate and from water with each denitrifier. This information can be used to improve delta(15)N values of nitrates having excess (17)O. The same analyses also yield estimates of the magnitude of (17)O excess in the nitrate (expressed as Delta(17)O) that may be useful in some environmental studies. The 1-sigma uncertainties of delta(15)N, delta(18)O and Delta(17)O measurements are +/-0.2, +/-0.3 and +/-5 per thousand, respectively.  相似文献   

6.
The relative importance of individual microbial pathways in nitrous oxide (N(2)O) production is not well known. The intramolecular distribution of (15)N in N(2)O provides a basis for distinguishing biological pathways. Concentrated cell suspensions of Methylococcus capsulatus Bath and Nitrosomonas europaea were used to investigate the site preference of N(2)O by microbial processes during nitrification. The average site preference of N(2)O formed during hydroxylamine oxidation by M. capsulatus Bath (5.5 +/- 3.5 per thousand) and N. europaea (-2.3 +/- 1.9 per thousand) and nitrite reduction by N. europaea (-8.3 +/- 3.6 per thousand) differed significantly (ANOVA, f((2,35)) = 247.9, p = 0). These results demonstrate that the mechanisms for hydroxylamine oxidation are distinct in M. capsulatus Bath and N. europaea. The average delta(18)O-N(2)O values of N(2)O formed during hydroxylamine oxidation for M. capsulatus Bath (53.1 +/- 2.9 per thousand) and N. europaea (-23.4 +/- 7.2 per thousand) and nitrite reduction by N. europaea (4.6 +/- 1.4 per thousand) were significantly different (ANOVA, f((2,35)) = 279.98, p = 0). Although the nitrogen isotope value of the substrate, hydroxylamine, was similar in both cultures, the observed fractionation (delta(15)N) associated with N(2)O production via hydroxylamine oxidation by M. capsulatus Bath and N. europaea (-2.3 and 26.0 per thousand, respectively) provided evidence that differences in isotopic fractionation were associated with these two organisms. The site preferences in this study are the first measured values for isolated microbial processes. The differences in site preference are significant and indicate that isotopomers provide a basis for apportioning biological processes producing N(2)O.  相似文献   

7.
We demonstrate a high-precision measurement of the isotopomer abundance ratio 14N(15)N(16)O/15N(14)N(16)O/14N(14)N(16)O (approximately 0.37/0.37/100) using three wavelength-modulated 2 microm diode lasers combined with a multipass cell which provides different optical pathlengths of 100 and 1 m to compensate the large abundance difference. A set of absorption lines for which the absorbances have almost the same temperature dependence are selected so that the effect of a change in gas temperature is minimized. The test experiment using pure nearly natural-abundance N(2)O samples showed that the site-selective 15N/14N ratios can be measured relative to a reference material with a precision of +/-3 x 10(-4) (+/-0.3 per thousand) in approximately 2 h.  相似文献   

8.
Three stable isotope ratios, D/H, (13)C/(12)C and (18)O/(16)O, are measurable in ethanol, an important organic compound that is used as a material for food and beverages, fuel and chemical feedstock, and as a substance related to metabolism. We developed a simple and rapid method of measurement of three isotope ratios of ethanol in aqueous solution at millimole levels using gas chromatography-high-temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS) combined with solid-phase microextraction (SPME). Using this method, the delta value for ethanol was determined in 30 min for deltaD and delta(13)C, and in 75 min for delta(18)O with precisions of +/-9 per thousand, +/-0.3 per thousand and +/-0.7 per thousand, respectively, for deltaD, delta(13)C, and delta(18)O. An advantage of this process is that it requires no distillation for ethanol purification. The method is useful for small quantities of analyte with low ethanol concentrations, which is expected for environmental and metabolic studies.  相似文献   

9.
Isotopic signatures of N2O are increasingly used to constrain the total global flux and the relative contribution of nitrification and denitrification to N2O emissions. Interpretation of isotopic signatures of soil-emitted N2O can be complicated by the isotopic effects of gas diffusion. The aim of our study was to measure the isotopic fractionation factors of diffusion for the isotopologues of N2O and to estimate the potential effect of diffusive fractionation during N2O fluxes from soils using simple simulations. Diffusion experiments were conducted to monitor isotopic signatures of N2O in reservoirs that lost N2O by defined diffusive fluxes. Two different mathematical approaches were used to derive diffusive isotope fractionation factors for 18O (epsilon18O), average 15N (epsilonbulk) and 15N of the central (alpha(-)) and peripheral (beta(-)) position within the linear N2O molecule (epsilon15Nalpha, epsilon15Nbeta). The measured epsilon18O was -7.79 +/- 0.27 per thousand and thus higher than the theoretical value of -8.7 per thousand. Conversely, the measured epsilonbulk (-5.23 +/- 0.27 per thousand) was lower than the theoretical value (-4.4 per thousand). The measured site-specific 15N fractionation factors were not equal, giving a difference between epsilon15Nalpha and epsilon15Nbeta (epsilonSP) of 1.55 +/- 0.28 per thousand. Diffusive fluxes of the N2O isotopologues from the soil pore space to the atmosphere were simulated, showing that isotopic signatures of N2O source pools and emitted N2O can be substantially different during periods of non-steady state fluxes. Our results show that diffusive isotope fractionation should be taken into account when interpreting natural abundance isotopic signatures of N2O fluxes from soils.  相似文献   

10.
Stable isotope ratios ((13)C/(12)C and (15)N/(14)N) were measured in royal jelly (RJ) samples by isotope ratio mass spectrometry (IRMS) to evaluate authenticity and adulteration. Carbon and nitrogen isotope contents (given as delta values relative to a standard, delta(13)C, delta(15)N) of RJ samples from various European origins and samples from commercial sources were analyzed. Uniform delta(13)C values from -26.7 to -24.9 per thousand were observed for authentic RJ from European origins. Values of delta(15)N ranged from -1.1 to 5.8 per thousand depending on the plant sources of nectars and pollen. High delta(13)C values of several commercial RJ samples from -20.8 to -13.3 per thousand indicated adulteration with high fructose corn syrup (HFCS) as a sugar source. Use of biotechnologically produced yeast powder as protein source for the adulterated samples was assumed as delta(15)N values were lower, as described for C(4) or CAM plant sources. RJ samples from authentic and from adulterated production were distinguished. The rapid and reliable method is suitable for urgent actual requirements in food monitoring.  相似文献   

11.
We developed a rapid, sensitive, and automated analytical system to determine the delta15N, delta18O, and Delta17O values of nitrous oxide (N2O) simultaneously in nanomolar quantities for a single batch of samples by continuous-flow isotope-ratio mass spectrometry (CF-IRMS) without any cumbersome and time-consuming pretreatments. The analytical system consisted of a vacuum line to extract and purify N2O, a gas chromatograph for further purification of N2O, an optional thermal furnace to decompose N2O to O2, and a CF-IRMS system. We also used pneumatic valves and pneumatic actuators in the system so that we could operate it automatically with timing software on a personal computer. The analytical precision was better than 0.12 per thousand for delta15N with >4 nmol N2O injections, 0.25 per thousand for delta18O with >4 nmol N2O injections, and 0.20 per thousand for Delta17O with >20 nmol N2O injections for a single measurement. We were also easily able to improve the precision (standard errors) to better than 0.05 per thousand for delta15N, 0.10 per thousand for delta18O, and 0.10 per thousand for Delta17O through multiple analyses with more than four repetitions with 190 nmol samples using the automated analytical system. Using the system, the delta15N, delta18O, and Delta17O values of N2O can be quantified not only for atmospheric samples, but also for other gas or liquid samples with low N2O content, such as soil gas or natural water. Here, we showed the first ever Delta17O measurements of soil N2O.  相似文献   

12.
In this paper we present an overview of the present knowledge relating to methods that avoid interference of N2O on delta13C and delta18O measurements of CO2. The main focus of research to date has been on atmospheric samples. However, N2O is predominantly generated by soil processes. Isotope analyses related to soil trace gas emissions are often performed with continuous flow isotope ratio mass spectrometers, which do not necessarily have the high precision needed for atmospheric research. However, it was shown by using laboratory and field samples that a correction to obtain reliable delta13C and delta18O values is also required for a commercial continuous flow isotope ratio mass spectrometer. The capillary gas chromatography column of the original equipment was changed to a packed Porapak Q column. This adaptation resulted in an improved accuracy and precision of delta13C (standard deviation(Ghent): from 0.2 to 0.08 per thousand; standard deviation(Lincoln): from 0.2 to 0.13 per thousand) of CO2 for N2O/CO2 ratios up to 0.1. For delta18O there was an improvement for the standard deviation measured at Ghent University (0.13 to 0.08 per thousand) but not for the measurements at Lincoln University (0.08 to 0.23 per thousand). The benefits of using the packed Porapak Q column compared with the theoretical correction method meant that samples were not limited to small N(2)O concentrations, they did not require an extra N2O concentration measurement, and measurements were independent of the variable isotopic composition of N2O from soil.  相似文献   

13.
We describe a modified version of the equilibration method and a correction algorithm for isotope ratio measurements of small quantities of water samples. The deltaD and the delta(18)O of the same water sample can both be analyzed using an automated equilibrator with sample sizes as small as 50 microL. Conventional equilibration techniques generally require water samples of several microL. That limitation is attributable mainly to changes in the isotope ratio ((18)O/(16)O or D/H) of water samples during isotopic exchange between the equilibration gas (CO(2) or H(2)) and water, and therefore the technique for microL quantities of water requires mass-balance correction using the water/gas (CO(2) or H(2)) mole ratio to correct this isotopic effect. We quantitatively evaluate factors controlling the variability of the isotopic effect due to sample size. Theoretical consideration shows that a simple linear equation corrects for the effects without determining parameters such as isotope fractionation factors and water/gas mole ratios. Precisions (1-sigma) of 50-microL meteoric water samples whose isotopic compositions of -1.4 to -396.2 per thousand for deltaD are +/-0.5 to +/-0.6 per thousand, and of -0.37 to -51.37 per thousand for delta(18)O are +/-0.01 to +/-0.11 per thousand.  相似文献   

14.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

15.
Past atmospheric composition can be reconstructed by the analysis of air enclosures in polar ice cores which archive ancient air in decadal to centennial resolution. Due to the different carbon isotopic signatures of different methane sources high-precision measurements of delta13CH4 in ice cores provide clues about the global methane cycle in the past. We developed a highly automated (continuous-flow) gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) technique for ice core samples of approximately 200 g. The methane is melt-extracted using a purge-and-trap method, then separated from the main air constituents, combusted and measured as CO2 by a conventional isotope ratio mass spectrometer. One CO2 working standard, one CH4 and two air reference gases are used to identify potential sources of isotope fractionation within the entire sample preparation process and to enhance the stability, reproducibility and accuracy of the measurement. After correction for gravitational fractionation, pre-industrial air samples from Greenland ice (1831 +/- 40 years) show a delta13C(VPDB) of -49.54 +/- 0.13 per thousand and Antarctic samples (1530 +/- 25 years) show a delta13C(VPDB) of -48.00 +/- 0.12 per thousand in good agreement with published data.  相似文献   

16.
Using continuous-flow isotope ratio mass spectrometry, we have developed a new analytical system which enables us to determine the stable carbon isotopic composition of CH3Cl, CH3Br, and C2-C5 saturated hydrocarbons in gas samples even if they contain substantial amounts of unsaturated hydrocarbons, using an I2O5 reagent for their selective subtraction. The analytical precision of the delta13C determinations is better than 0.5 per thousand for >300 pmolC injections and better than 5 per thousand for 20 pmolC injections. Using the system, delta13C values for CH3Cl and CH3Br were found in burning exhaust that contain a substantial quantity of unsaturated hydrocarbons. CH3Cl and CH3Br measured in exhaust from burning rice plants exhibit highly 13C-depleted values of -56.6 +/- 1.3 per thousand and -48.6 +/- 3.9 per thousand, respectively, while saturated hydrocarbons exhibit delta13C values (-26.4 to -28.9 per thousand) that are comparable with the total delta13C value of the parent material (rice plant; -28.0 per thousand). Using the system, we can determine the delta13C values of methyl halides and hydrocarbons in many kinds of gas samples.  相似文献   

17.
Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO(3)(-) in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying delta(18)O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO(3)) with low delta(18)O and USGS35 (NaNO(3)) with high delta(18)O and 'mass-independent' delta(17)O. The procedure used to produce USGS34 involved equilibration of HNO(3) with (18)O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO(3)(-) reference materials with a range of delta(18)O values and normal (mass-dependent) (18)O:(17)O:(16)O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (alpha) between [NO(3)(-)] and H(2)O decreases with increasing temperature from 1.0215 at 22 degrees C to 1.0131 at 100 degrees C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high (17)O:(18)O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO(3) (-) isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO(3)(-) samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of +/-0.2-0.3 per thousand, 1sigma): IAEA-N3 has delta(18)O = +25.6 per thousand and delta(17)O = +13.2 per thousand; USGS32 has delta(18)O = +25.7 per thousand; USGS34 has delta(18)O = -27.9 per thousand and delta(17)O = -14.8 per thousand; and USGS35 has delta(18)O = +57.5 per thousand and delta(17)O = +51.5 per thousand.  相似文献   

18.
A simple modification to a commercially available gas chromatograph isotope ratio mass spectrometer (GC/IRMS) allows rapid and precise determination of the stable isotopes ((13)C and (18)O) of CO(2) at ambient CO(2) concentrations. A sample loop was inserted downstream of the GC injection port and used to introduce small volumes of air samples into the GC/IRMS. This procedure does not require a cryofocusing step and significantly reduces the analysis time. The precisions for delta(13)C and delta(18)O of CO(2) at ambient concentration were +/-0.164 and +/-0.247 per thousand, respectively. This modified GC/IRMS was used to test the effects of storage on the (18)O and (13)C isotopic ratios of CO(2) at ambient concentrations in four container types. On average, the change in the (13)C-CO(2) and (18)O-CO(2) ratios of samples after one week of storage in glass vials equipped with butyl rubber stoppers (Bellco Glass Inc.) were depleted by 0.12 and by 0.20 per thousand, respectively. The (13)C ratios in aluminum canisters (Scotty II and IV, Scott Specialty Gasses) after one month of storage were depleted, on average, by 0.73 and 2.04 per thousand, respectively, while the (18)O ratios were depleted by 0.38 and 1.20 per thousand for the Scotty II and IV, respectively. After a month of storage in electropolished containers (Summa canisters, Biospheric Research Corporation), the (13)C-CO(2) and (18)O-CO(2) ratios were depleted, on average, by 0.26 and enriched by 0.30 per thousand, respectively, close to the precision of measurements. Samples were collected at a mature hardwood forest for CO(2) concentration determination and isotopic analysis. A comparison of CO(2) concentrations determined with an infrared gas analyzer and from sample voltages, determined on the GC/IRMS concurrent with the isotopic analysis, indicated that CO(2) concentrations can be determined reliably with the GC/IRMS technique. The (13)C and (18)O ratios of nighttime ecosystem-respired CO(2), determined from the intercept of Keeling plots, were -26.11 per thousand (V-PDB) and -8.81 per thousand (V-PDB-CO(2)), respectively.  相似文献   

19.
On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration.Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data.  相似文献   

20.
A continuous-flow technique has been developed to analyse the deltaD and delta(13)C values for CH(4) from gas samples, in a single run. This is achieved by splitting the sample gas stream and directing the streams simultaneously through a CuNiPt combustion reactor and an alumina pyrolysis reactor. The CO(2) from CH(4) combustion is trapped in a liquid nitrogen trap while the H(2) exiting the pyrolysis reactor is directed to the mass spectrometer for deltaD(CH4) determination. The CO(2) is then sublimed and directed to the mass spectrometer for delta(13)C(CH4) determination. Sample runs take approximately 10 minutes. This technique gives accurate delta(13)C(CH4) results to within +/-0.3-0.5 per thousand and deltaD(CH4) results to within +/-2-5 per thousand. Injection volumes between 0.5 and 2.5 microL of CH(4), equivalent to between 20 and 100 nmol CH(4), are required for accurate delta(13)C and deltaD analyses, respectively, using sample injection into a split flow with a split ratio of 10. This method provides rapid, accurate and reproducible results on multiple sample runs and is, therefore, an ideal method for analysing natural gas samples from a variety of sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号