首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporal dynamics of vertical profiles of the longitudinal and transverse velocity structure functions and characteristics retrieved using an original procedure from regular measurements of vertical profiles of the wind velocity vector with a minisodar operating at a frequency of 4900 Hz is discussed. It is established that the structure functions first increase with the separation of the observation points and then are saturated; moreover, in agreement with the data available from the literature, the longitudinal velocity structure function is much greater than the transverse one. The altitude behavior of the velocity structure characteristic is well described by a z −2/3 dependence predicted theoretically. In this case, the structure function calculated from one-point measurements of the vertical wind velocity component exceeds the corresponding structure function retrieved for the vertical separation of the observation points. This is also in agreement with generalizations from the theory of isotropic turbulence.  相似文献   

2.
A method of simultaneous acoustic sounding of vertical profiles of the thermal and velocity structure parameters with allowance for the turbulent sound attenuation is suggested in the present work. A closed iterative algorithm that implements the suggested method is described, and results of its application for processing of measurements with the Zvuk-2 three-component Doppler sodar are given. It is demonstrated that the thermal, velocity, and acoustic refractive index structure characteristics obtained are in good agreement with the data available from the literature. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 84–90, November, 2008.  相似文献   

3.
4.
The results of experiments for turbulent flows in a thin layer of conducting fluid above a solid surface generated by the Ampere force when passing a current and under the action of a spatially periodic magnetic field are considered. The statistical characteristics of the flows are shown to exhibit three-dimensional (3D) dynamics even on horizontal scales exceeding the layer thickness by an order of magnitude. In this case, the third-order longitudinal structure functions of the velocity field are approximately linear in spatial displacement and negative, as in 3D turbulence, due to the dominant contribution of energy dissipation when the boundary condition for adhesion on the lower surface is met. The dissipation and basic energy production terms are estimated for the energy balance equation.  相似文献   

5.
The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces.  相似文献   

6.
Using a mathematical model, which includes the averaged motion equations, differential transport equations of normal Reynolds stresses and dissipation rate, we carried out numerical modeling of evolution of a swirling turbulent wake with nonzero total excess momentum and angular momentum. The calculations were done to very large distances from the body. For small distances from the body the calculated profiles of averaged motion velocities and intensities of turbulent fluctuations of the longitudinal velocity component are in good agreement with the known experimental data of the Lavrent’ev Institute of Hydrodynamics, SB RAS. A simplified model of the flow is constructed.  相似文献   

7.
E. P. Potanin 《Technical Physics》2006,51(12):1586-1590
Resonance rf heating of gadolinium plasma ions is calculated in the configuration when an electric field travels along a permanent magnetic field and simultaneously rotates in the direction normal to the latter. Two model functions are taken as initial ion distribution functions over longitudinal velocities: one is a linear function of the velocity in the low velocity range and the other is a shifted semi-Maxwellian function. The ion transverse velocity distribution function is calculated under the assumption that the initial “transverse” distribution function is Maxwellian with a temperature of 5 eV. Ion fluxes toward collector plates are calculated by integrating the total distribution function over the allowed ranges of longitudinal and transverse velocities and transverse coordinates of the guiding center of the ions before the collector. The calculation is performed as applied to the 157Gd target isotope and its two nearest neighbors. The effect of the longitudinal temperature on the width of the heating efficiency resonance line and of the longitudinal magnetic field on the ion heating selectivity is studied. Also, the influence of the longitudinal wavenumber of the warming traveling electric field on the selectivity of an ion cyclotron resonance reactor is investigated. The heating efficiency is estimated from the frequency dependence of the fraction of ions heated to an energy above a given value.  相似文献   

8.
Analytical expressions are derived for the rates of longitudinal and transverse nuclear spin relaxation under conditions of fast modulation of the magnitude and direction of a hyperfine field induced by unpaired electrons of an ion. The results obtained are used to explain the data available in the literature on the 55Mn spin relaxation in the ferromagnetic metallic phase of doped perovskites, in which the modulation of the hyperfine field is caused by the hopping of e g electrons between Mn3+ and Mn4+ ions. It is demonstrated that, within this model, the rates of longitudinal and transverse relaxation are characterized by the same temperature dependence and their ratio is independent of temperature, which is in agreement with the experimental data.  相似文献   

9.
A turbulent flow is maintained by an external supply of kinetic energy, which is eventually dissipated into heat at steep velocity gradients. The scale at which energy is supplied greatly differs from the scale at which energy is dissipated, the more so as the turbulent intensity(the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for singleparticle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.  相似文献   

10.
Turbulent boundary layers exhibit a universal structure that nevertheless is rather complex and is composed of a viscous sublayer, a buffer zone, and a turbulent log-law region. In this letter, we present a simple analytic model of turbulent boundary layers that culminates in explicit formulas for the profiles of the mean velocity, the kinetic energy, and the Reynolds stress as a function of the distance from the wall. The resulting profiles are in close quantitative agreement with measurements over the entire structure of the boundary layer without any need of refitting in the different zones. The text was submitted by the authors in English.  相似文献   

11.
The parallel and transverse components of diffusion constants of electrons in CdTe have been computed for fields of 30, 40, and 50 kV/cm using the Monte Carlo method. Results are presented for the velocity autocorrelation function and for the ac diffusion constants for two models of energy band structure and scattering constants, used earlier in the literature. The diffusion constants as obtained from the two models are significantly different, but none are in agreement with the available experimental results.  相似文献   

12.
陈彬  刘阁 《计算物理》2018,35(2):169-177
采用二维粒子图像测速仪(2DPIV)对槽道内涡波流场进行实验研究,用POD技术对2DPIV瞬态速度矢量场进行主导模态重构,得到槽道内的平均流速和湍流动能分布;采用大涡PIV方法对湍流动能耗散率分布进行计算.结果表明:重构流场表征了原始流场的主导结构,剔除了噪声等干扰信息;大涡PIV方法能有效地估算动能耗散率的分布;湍流动能在壁面附近较小,在接近槽道中心区域湍流动能越来越大,呈现出射流的特征;动能耗散率的峰值出现在壁面附近和槽道中心区域,动能耗散率随着远离壁面程度的增加先降低后逐渐增加直至达到峰值.  相似文献   

13.
A direct numerical simulation of the shock/turbulent boundary layer interaction flow in a supersonic 24-degree compression ramp is conducted with the free stream Mach number 2.9.The blow-and-suction disturbance in the upstream wall boundary is used to trigger the transition.Both the mean wall pressure and the velocity profiles agree with those of the experimental data,which validates the simulation.The turbulent kinetic energy budget in the separation region is analyzed.Results show that the turbulent production term increases fast in the separation region,while the turbulent dissipation term reaches its peak in the near-wall region.The turbulent transport term contributes to the balance of the turbulent conduction and turbulent dissipation.Based on the analysis of instantaneous pressure in the downstream region of the mean shock and that in the separation bubble,the authors suggest that the low frequency oscillation of the shock is not caused by the upstream turbulent disturbance,but rather the instability of separation bubble.  相似文献   

14.
The present paper aims at evaluating the mean wall skin friction data in laminar and turbulent boundary layer flows obtained from two optical and one thermal measuring techniques, namely, laser-Doppler anemometry (LDA), oil-film interferometry (OFI), and surface hot-film anemometry (SHFA), respectively. A comparison among the three techniques is presented, indicating close agreement in the mean wall skin friction data obtained, directly, from both the OFI and the LDA near-wall mean velocity profiles. On the other hand, the SHFA, markedly, over estimates the mean wall skin friction by 3.5–11.7% when compared with both the LDA and the OFI data, depending on the thermal conductivity of the substrate and glue material, probe calibration, probe contamination, temperature drift and Reynolds number. Satisfactory agreement, however, is observed among all three measuring techniques at higher Reynolds numbers, Re x >106, and within ±5% with empirical relations extracted from the literature. In addition, accurate velocity data within the inertial sublayer obtained using the LDA supports the applicability of the Clauser method to evaluate the wall skin friction when appropriate values for the constants of the logarithmic line are utilized.  相似文献   

15.
We ask what determines the (small) angle of turbulent jets. To answer this question we first construct a deterministic vortex-street model representing the large-scale structure in a self-similar plane turbulent jet. Without adjustable parameters the model reproduces the mean velocity profiles and the transverse positions of the large-scale structures, including their mean sweeping velocities, in a quantitative agreement with experiments. Nevertheless, the exact self-similar arrangement of the vortices (or any other deterministic model) necessarily leads to a collapse of the jet angle. The observed (small) angle results from a competition between vortex sweeping tending to strongly collapse the jet and randomness in the vortex structure, with the latter resulting in a weak spreading of the jet.  相似文献   

16.
A theoretical model of turbulent fiber suspension is developed by deriving the equations of Reynolds averaged Navier-Stokes,turbulence kinetic energy and turbulence dissipation rate with the additional term of fibers.In order to close the above equations,the equation of probability distribution function for mean fiber orientation is also derived.The theoretical model is applied to the turbulent channel flow and the corresponding equations are solved numerically.The numerical results are verified by comparisons with the experimental ones.The effects of Reynolds number,fiber concentration and fiber aspect-ratio on the velocity profile,turbulent kinetic energy and turbulent dissipation rate are analyzed.Based on the numerical data,the expression for the velocity profile in the turbulent fiber suspension channel flow,which includes the effect of Reynolds number,fiber concentration and aspect-ratio,is proposed.  相似文献   

17.
Viscous dissipation and its contribution to turbulent kinetic energy (TKE) budget are investigated in the asymmetric jet–wake flow of a forward-curved centrifugal turbomachine. Single-plane three-dimensional turbulent data are obtained using stereoscopic particle image velocimetry (SPIV). Viscous dissipation is indirectly estimated from subgrid-scale (SGS) dissipation (SGS energy flux) by filtering velocity field using a top-hat filter. The filter scale should be within the inertial sub-range and this is ensured by spectral analysis of the measured field. Reduction of turbulent energy flux for smaller filter scales plus underestimation of viscous dissipation as compared with other TKE terms both suggest the presence of spectral shortcut. This bypass energy transfer (from intermediate scales towards dissipative scales) works in parallel with direct SGS energy transfer and affects the classical energy cascade. Analysis of TKE budget in the rotor exit region shows significant radial/circumferential variations in the contributing terms. These variations are mainly due to jet–wake–volute interactions, circumferential asymmetry of volute area and expansion of flow toward the fan outlet.  相似文献   

18.
Imtiaz Ahmad  卢志明  刘宇陆 《中国物理 B》2014,23(1):14701-014701
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin’s model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.  相似文献   

19.
用液氮骤冷方法制备了(AgI)x(Ag4P2O7)1-x系列非晶态快离子导体。对AgI摩尔浓度x=0.50,0.60,0.67,0.75,0.80的样品,在77—300K温度范围及2,5,10,15MHz的频率上测量了纵波和横波的超声衰减和声速。发现在200—240K附近存在一个异常强的弛豫型超声吸收峰,随AgI含量的增加,该峰的位置向低温方向移动,且峰的高度增大。在实验的温度范围内,观察到纵波和 关键词:  相似文献   

20.
The relationships between the energy of small-scale turbulence and its dissipation rate are studied based on the data of long-term high-frequency measurements of temperature and wind velocity fluctuations in urban area. It is shown that the energy of wind velocity turbulent fluctuations is linearly related to the dissipation rate ɛ. The proportionality coefficient between turbulent kinetic energy (TKE) and ɛ is dimensional and does not depend on the stratification of the atmosphere, the Richardson number, or the Monin-Obukhov scale. Measurements in different seasons show that this coefficient can be related to the mean velocity of adiabatic motions (sound speed or air temperature), which enables one to select a more universal constant, γ. A linear relationship between the temperature fluctuations variance (the characteristic of the inner energy of turbulence) and their dissipation rate is also shown. The revealed proportionality is confirmed by measurements in urban and forest conditions, as well as in the surface layer over a flat desert terrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号