首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

3.
We study the statistical properties of SIR epidemics in random networks, when an epidemic is defined as only those SIR propagations that reach or exceed a minimum size sc. Using percolation theory to calculate the average fractional size of an epidemic, we find that the strength of the spanning link percolation cluster P is an upper bound to . For small values of sc, P is no longer a good approximation, and the average fractional size has to be computed directly. We find that the choice of sc is generally (but not always) guided by the network structure and the value of T of the disease in question. If the goal is to always obtain P as the average epidemic size, one should choose sc to be the typical size of the largest percolation cluster at the critical percolation threshold for the transmissibility. We also study Q, the probability that an SIR propagation reaches the epidemic mass sc, and find that it is well characterized by percolation theory. We apply our results to real networks (DIMES and Tracerouter) to measure the consequences of the choice sc on predictions of average outcome sizes of computer failure epidemics.  相似文献   

4.
We investigated the optimum structure for Ti-containing Hf-based high-k gate dielectrics to achieve EOT scaling below 1 nm. TiO2/HfSiO/SiO2 trilayer and HfTiSiO/SiO2 bilayer structures were fabricated by a newly developed in-situ PVD-based method. We found that thermal diffusion of Ti atoms to SiO2 underlayers degrades the EOT-Jg characteristics. Our results clearly demonstrated the impact of the trilayered structure with TiO2 capping for improving EOT-Jg characteristics of the gate stack. We achieved an EOT scaling of 0.78 nm as well as reduced gate leakage of 7.2 × 10−2 A/cm2 for a TiO2/HfSiO/SiO2 trilayered high-k dielectric while maintaining the electrical properties at the bottom interface.  相似文献   

5.
Using the functional renormalization group (FRG) we study the thermal fluctuations of elastic objects (displacement field u, internal dimension d) pinned by a random potential at low temperature T, as prototypes for glasses. A challenge is how the field theory can describe both typical (minimum energy T = 0) configurations, as well as thermal averages which, at any non-zero T as in the phenomenological droplet picture, are dominated by rare degeneracies between low lying minima. We show that this occurs through an essentially non-perturbative thermal boundary layer (TBL) in the (running) effective action Γ [u] at T > 0 for which we find a consistent scaling ansatz to all orders. The TBL describes how temperature smoothes the singularities of the T = 0 theory and contains the physics of rare thermal excitations (droplets). The formal structure of this TBL, which involves all cumulants of the coarse grained disorder, is first explored around d = 4 using a one-loop Wilson RG. Next, a more systematic exact RG (ERG) method is employed, and first tested on d = 0 models where it can be pushed quite far. There we obtain precise relations between TBL quantities and droplet probabilities (those are constrained by exact identities which are then checked against recent exact results). Our analysis is then extended to higher d, where we illustrate how the TBL scaling remains consistent to all orders in the ERG and how droplet picture results can be retrieved. Since correlations are determined deep in the TBL (by derivatives of Γ [u] at u = 0), it remains to be understood (in any d) how they can be retrieved (as u = 0+ limits in the non-analytic T = 0 effective action), i.e., how to recover a T = 0 critical theory. This formidable “matching problem” is solved in detail for d = 0, N = 1 by studying the (partial) TBL structure of higher cumulants when points are brought together. We thereby obtain the β-function at T = 0, all ambiguities removed, displayed here up to four loops. A discussion of the d > 4 case and an exact solution at large d are also provided.  相似文献   

6.
Herein, a discussion of the effect of deposition temperature on the magnetic behavior of Ni0.5Zn0.5Fe2O4 thin films. The thin films were grown by r.f. sputtering technique on (1 0 0) MgO single-crystal substrates at deposition temperatures ranging between 400 and 800 °C. The grain boundary microstructure was analyzed via atomic force microscopy (AFM). AFM images show that grain size (φ∼70-112 nm) increases with increasing deposition temperature, according to a diffusion growth model. From magneto-optical Kerr effect (MOKE) measurements at room temperature, coercive fields, Hc, between 37and 131 Oe were measured. The coercive field, Hc, as a function of grain size, reaches a maximum value of 131 Oe for φ ∼93 nm, while the relative saturation magnetization exhibits a minimum value at this grain size. The behaviors observed were interpreted as the existence of a critical size for the transition from single- to multi-domain regime. The saturation magnetization (21 emu/g<Ms<60 emu/g) was employed to quantify the critical magnetic intergranular correlation length (Lc≈166 nm), where a single-grain to coupled-grain behavior transition occurs. Experimental hysteresis loops were fitted by the Jiles-Atherton model (JAM). The value of the k-parameter of the JAM fitted by means of this model (k/μo∼50 A m2) was correlated to the domain size from the behavior of k, we observed a maximum in the density of defects for the sample with φ∼93 nm.  相似文献   

7.
In this paper it is demonstrated that the second phase transition of Gd2In intermetallic compound gets eliminated by diluting Gd2−x(LaY)xIn at a critical composition of x=0.5. The exchange coupling for intra-cluster interactions is estimated in the correlation ranges of 3.3 Å<RC<3.6 Å (anisotropic source) and for inter-cluster interactions in the ranges of RC>4 Å where the correlation length is defined as . The sign and strength of the exchange coupling are identified by the eigenvalues λ(k) and are obtained from zeros of the 4×4 matrix of JijRR along the three directions of the reciprocal lattice for each dilution (x=0.25, 0.5, 0.75, 1). The transition temperature is calculated using the minimum eigenvalue λmin (k=0, π) which agrees with the experiment. Magnetic field and temperature dependence of the magnetization and electrical resistivity measurements show that: (i) Elimination of the AFM phase is caused by breaking of some FM short-range exchange couplings, and (ii) Conduction electrons order antiferromagnetically at low temperatures and ferromagnetically at high temperatures.  相似文献   

8.
The structure and equation of state of CsCl-type sodium chloride have been determined using high-pressure powder X-ray diffraction from 32 to 134 GPa. The CsCl-type phase remains stable over this entire pressure range. Pressure-volume data can be fitted with a Vinet equation of state with K30 GPa=135.1 GPa, K30 GPa=3.9, and V30 GPa=27.70 Å3. The nearest-neighbour distance between sodium and chlorine atoms decreased as pressure increased. Significant discrepancies of nearest-neighbour distance between previous theoretical predictions and this study were observed at pressures higher than 70 GPa.  相似文献   

9.
We have studied [N(C2H5)4]2MnCl4 crystal by X-band CW EPR spectra in the temperature range 170-300 K. The angular dependences of linewidth ΔH were measured and described in the light of a double-layer system (2D) with exchange interactions. Two temperature anomalies of linewidth ΔH were found at T1=225 K and T2=192 K on cooling. Different behaviors of ΔH anomalies recorded for an external magnetic field parallel and perpendicular to the ab crystallographic plane indicate ordering/disordering of MnCl4 groups in this plane and their displacement along the c-axis which occurs in the temperature of about 225 K.  相似文献   

10.
The use of a pulsed magnetic field for studies on frequency characteristics of the magnetoelectric (ME) effect in multilayer composite structures is described. The method is based on the excitation of a ferrite-lead zirconate titanate multilayer with short magnetic field pulses, followed by the measurement and Fourier analysis of the ME response signal. It is shown that the ME voltage coefficient αE generally decreases as the frequency increases from 1 kHz to 1 MHz except (i) at some discrete frequencies where the coefficient increases by an order of magnitude due to electromechanical resonance in the structure and (ii) a local maximum at 2-4 kHz in αE vs. frequency due to relaxation processes caused by the conductivity of individual layers.  相似文献   

11.
Recently, tetramantane, a member of diamondoid series (C4n+6H4n+12), has shown to exhibit negative-electron-affinity effect which has a potential use for efficient electron emitting devices. Here, we explore the electronic property of adamantane (C10H16), the smallest member of the series. We prepare adamantane films on Si(1 1 1) substrates and then study their electronic structure with photoemission spectroscopy. Photoelectron spectra of adamantane on Si(1 1 1) have shown a peak at low-kinetic energy which could be a generic property of diamondoids. The possibility of the negative-electron-affinity effect in adamantane is further discussed.  相似文献   

12.
We present new electron energy-loss spectroscopy (EELS) and Auger (AES) experiments aimed to study the structural transition of the Ge(111) surface taking place at high temperatures. Our advanced high-temperature set-up allowed us to collect accurate EELS spectra near the M2,3 excitation edges and AES MMV and MVV spectra, corresponding to different probing depths ranging from 4 to 10 Å. The metallization of the surface has been clearly detected by the shift of the M2,3 edge and of the MMV, MVV Auger energies. A detailed study of the transition has been performed using a fine temperature step under thermal equilibrium conditions. The AES and EELS experiments show that a sudden semiconductor-metal transition takes place at about 1000 K involving mainly the topmost layers. Deeper layers within 10 Å are also involved in the metallization process (in a range of 10 above 1010 K) and a smooth change in the topmost layers is also observed at higher temperatures up to 1070 K. These transitions are not fully reversible upon cooling (down to 870 K). Structural and electronic characteristics of the surface transition are discussed in light of available models.  相似文献   

13.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

14.
A new site percolation model, directed spiral percolation (DSP), under both directional and rotational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold p c ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are fractals of dimension d f ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint, the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths, one along the elongation of the cluster and the other perpendicular to it, diverge as pp c with different critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different moments of the cluster size distribution P s(p) show power law behaviour with | p - p c| in the critical regime with appropriate critical exponents. The values of the critical exponents are estimated and found to be very different from those obtained in other percolation models. The proposed DSP model thus belongs to a new universality class. A scaling theory has been developed for the cluster related quantities. The critical exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation. A reasonable data collapse is observed in favour of the assumed scaling function form of P s(p). The results obtained are in good agreement with other model calculations. Received 10 November 2002 / Received in final form 20 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: santra@iitg.ernet.in  相似文献   

15.
Mn-doped ZnO (Zn1−xMnxO, 0 ≤ x ≤ 0.1) films are prepared by an ultrasonic spray assisted chemical vapor deposition method. X-ray diffraction and Raman scattering show that all the Zn1−xMnxO films are good wurtzite structures without any impurity phases. Cathodoluminescence spectra show that ultraviolet emission and green luminescence can be observed. The intensity of ultraviolet emission decreases with the increment of x, while the intensity of green luminescence increases with the increment of x when x ≤ 0.02. However, when x (x > 0.02) is further increased, the intensity of green luminescence decreases gradually, and the green luminescence disappears when x is above 0.075. We consider that the change of the luminescence is related to the competition between the radiative recombination and the non-radiative recombination.  相似文献   

16.
We have characterized the performance of soft-X-ray detectors fabricated with undoped and B-doped homoepitaxial diamond layers of high quality which were grown on a commercially available type Ib (1 0 0) substrate by means of a high-power microwave-plasma chemical-vapor-deposition (CVD) method. The signal currents of the diamond-based detectors with thin TiN electrodes formed vertically (along the homoepitaxial growth direction) were measured at room temperature as a function of the applied voltage, Va, for irradiations of 500-1200 eV soft-X-ray beams ranging from ≈6 × 109 to ≈1 × 1011 photons/s. The deduced apparent quantum efficiencies increased with the increasing Va and reached to 2.5 × 103 at Va = 60 V. As expected from the device structure, the detector performance depended only very slightly on the applied magnetic field up to 10 T. The excellently high sensitivities attained for soft-X-ray photons are discussed in relation to carrier amplification mechanisms which invested the above diamond detectors.  相似文献   

17.
Hydrogenated amorphous SiC films (a-Si1−xCx:H) were prepared by dc magnetron sputtering technique on p-type Si(1 0 0) and corning 9075 substrates at low temperature, by using 32 sprigs of silicon carbide (6H-SiC). The deposited a-Si1−xCx:H film was realized under a mixture of argon and hydrogen gases. The a-Si1−xCx:H films have been investigated by scanning electronic microscopy equipped with an EDS system (SEM-EDS), X-ray diffraction (XRD), secondary ions mass spectrometry (SIMS), Fourier transform infrared spectroscopy (FTIR), UV-vis-IR spectrophotometry, and photoluminescence (PL). XRD results showed that the deposited film was amorphous with a structure as a-Si0.80C0.20:H corresponding to 20 at.% carbon. The photoluminescence response of the samples was observed in the visible range at room temperature with two peaks centred at 463 nm (2.68 eV) and 542 nm (2.29 eV). In addition, the dependence of photoluminescence behaviour on film thickness for a certain carbon composition in hydrogenated amorphous SiC films (a-Si1−xCx:H) has been investigated.  相似文献   

18.
We report on the process of low energy N2+ implantation and annealing of a Cu(0 0 1) surface. Through AES we study the N diffusion process as a function of the substrate temperature. With STM and LEIS we characterize the surface morphology and the electronic structure is analyzed with ARUPS. Under annealing (500 < T < 700 K) N migrates to the surface and reacts forming a CuxN compound that decomposes at temperatures above 700 K. LEIS measurements show that N locates on the four-fold hollow sites of the Cu(0 0 1) surface in a c(2 × 2) arrangement. Finally, a gap along the [0 0 1] azimuthal direction is determined by ARUPS. DFT calculations provide support to our conclusions.  相似文献   

19.
Wei Zhang 《Physics letters. A》2008,372(26):4726-4729
The dynamic critical phenomena near depinning transition in two-dimensional fully frustrated square lattice Coulomb gas model with disorders was studied using Monte Carlo technique. The ground state of the model system with disorder σ=0.3 is a disordered state. The dependence of charge current density J on electric field E was investigated at low temperatures. The nonlinear J-E behavior near critical depinning field can be described by a scaling function proposed for three-dimensional flux line system [M.B. Luo, X. Hu, Phys. Rev. Lett. 98 (2007) 267002]. We evaluated critical exponents and found an Arrhenius creep motion for field region Ec/2<E<Ec. The scaling law of the depinning transition is also obtained from the scaling function.  相似文献   

20.
Electroabsorption (EA) studies at room temperature on organic thin films based on a dicyanovinyl-quaterthiophene 4T-V(CN)2 are reported. An electric field modulation is applied to the samples for two different electrode geometries, i.e. sandwich and coplanar versus the organic layer. Changes in optical absorption coefficient of 4T-V(CN)2 based thin films are measured and analyzed to determine the character of the optical transition in the visible range (400-800 nm). Depending on the experimental electrode configuration, magnitude of electroabsorption responses are different, possibly due to different distribution of the externally applied electric field. The results indicate a higher resolution of EA response for the sandwich electrode configuration and confirm the charge transfer exciton character of 4T-V(CN)2 in contrast to the unsubstituted quaterthiophene 4T. Finally, a third-order nonlinear susceptibility χ(3) (−ω; ω, 0, 0) of 16 × 10−12 e.s.u. is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号