首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
2.
3.
4.
5.
We describe the application of low energy time-of-flight coincidence (e,2e) spectroscopy for measurements of the energy band parameters of a dielectric. The (e,2e) spectrometer can operate also in a single-electron mode by switching off coincidence conditions, and can be used for recording electron energy loss spectra (EELS). Thus, the combination of (e,2e) and EELS allows the measurement of energy gap Eg, valence bandwidth ΔEval, electron affinity χ and excitonic levels position Eex of a dielectric. The energy band parameters of LiF film deposited on Si(001) surface are measured: ΔEval=   相似文献   

6.
7.
8.
9.
The unclamped relative permittivity, , and the Pockels coefficient, , of congruent lithium niobate at a frequency f = 5760 Hz have been determined at low temperatures (7 K < T < 300 K). A He cryostat setup mounted to one arm of an electronically phase-stabilized Michelson interferometer was utilized for the measurement of . A continuous decrease in both parameters was observed as T → 0 K with limiting values of and , respectively.  相似文献   

10.
We present the infrared and Raman study of the optical phonon modes of the defective compounds ZnGa2Se4 and ZnGa2S4. Most of the compounds have been found to crystallize in the thiogallate structure (defect chalcopyrite) with space group where all cations and vacancies are ordered. For some Zinc compounds a partially disordered cationic sublattice with various degrees of cation and vacancy statistical distribution, which lead to the higher symmetry (defect stannite), has been reported. For ZnGa2Se4 we have found three modes of A symmetry, showing Raman activity only. In addition, we have observed each five modes of B and E symmetry, showing infrared as well as Raman activity. The number of modes and their symmetry assignment, based on polarized measurements, clearly indicate space group for the investigated crystals of ZnGa2Se4.Regarding ZnGa2S4 we have found three modes exclusively showing Raman activity (2A⊕1B1), and only eight modes showing infrared as well as Raman activity (3B2⊕5E). The assignment of the modes has been derived by analyzing the spectral positions of the vibrational modes in comparison to a number of compounds. From the number and symmetry assignment of the optical phonon modes we confirm that ZnGa2S4 most likely crystallizes in space group .  相似文献   

11.
The pure rotational spectrum of bromomethylene (HCBr) was studied by kinetic microwave spectroscopy between 420 and 472 GHz. The HCBr radical was produced by 193-nm ArF laser photolysis of bromoform (CHBr3). More than 130 rotational transitions for both and species in the ground vibrational state were measured involving 1?J?33 and 0?Ka?5. The spectra were well described by an S-reduced Watson Hamiltonian in the Ir representation including the nuclear quadrupole and spin-rotation hyperfine terms. Rotational, centrifugal distortion, nuclear quadrupole and spin-rotation coupling constants were derived for both and species in the ground vibrational state.  相似文献   

12.
Recently, there is growing evidence that a new state of matter is formed in  Au+Au collisions at RHIC: a strongly coupled Quark Gluon Plasma of partonic degrees of freedom which develops a collective motion. Dilepton spectra are not affected by strong interaction and can therefore probe the whole time evolution of the collision. Thus they may be sensitive to the onset of deconfinement, chiral symmetry restoration, as well as the production of thermal photons. The PHENIX experiment measured the production of e+e pairs in p+p and Au+Au collisions at . An enhanced dilepton yield in the mass range is measured. The excess increases faster with centrality than the number of participating nucleons, and is concentrated at . At higher pT the excess below 300 MeV/c2 has been related to an enhanced production of direct photons, possibly of thermal origin.  相似文献   

13.
14.
15.
16.
17.
Deep level transient spectroscopy (DLTS) has been employed to study electron traps in hydrothermally grown n-type ZnO samples after thermal treatments up to 1500 °C. Schottky barrier contacts were formed by e-beam evaporation of Pd, followed by DLTS and secondary ion mass spectrometry (SIMS) measurements in order to investigate possible correlations between electron traps in the upper part of the band gap and the concentration of the most prominent impurities. The DLTS results show three different levels having energy positions of , , and (Ec denotes the conduction band edge). The SIMS results showed that the most pronounced impurities were Li, Al, Si, Mg, Fe, Mn, and Ni with concentrations up to . A decrease in the level is observed after temperature treatments above 1300 °C, and in the same temperature range the Li concentration drops from ∼1017 to . However, based on absolute concentration values an association between Li and the level can be ruled out. In contrast, the level, which is not stable above 1300 °C, may be associated with Li but further experimental data are needed to substantiate this assignment. The level occurred in selected samples and is presumably impurity-related but no correlation was found with the main impurities detected by SIMS. Except for Li, the concentration of all the impurities remained essentially constant as a function of heat treatment temperature.  相似文献   

18.
The results of millimeter and submillimeter wave rotational spectroscopy are used to simulate the complex structure of the 2ν9-ν9 and ν5-ν9 hot bands. The comparison data were obtained with a high-resolution Bruker FTIR. The combination of the quality of these data and the complexity of the spectra of these interacting states represents a stringent test for the simulation. It is shown that the agreement is very good and that this approach is generally advantageous. From this simulation, the ratios of the transition dipole moments for the 2ν9-ν9 and ν5-ν9 hot bands with respect to the ν9 fundamental band were found to be 1.38(11) and 0.67(20), respectively. Using these results, the calculated integrated band intensities for the hot bands at were determined to be and . These results were used to successfully simulate high-resolution stratospheric spectra obtained from a balloon flight of the FIRS-2 spectrometer. The more general problem of the rotation-vibration database and the optimal use of both microwave and infrared data to define it is discussed. It is concluded that it is best if the combination of data takes place at the level of the original spectra.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号