首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, rapid and accurate ion‐exclusion chromatographic method coupled with a UV detector for the determination of uric acid in human urine samples has been developed. The separation was carried out on an ion‐exclusion column using only pure water as mobile phase. The detection wavelength was 254 nm and urine sample was injected directly without any pretreatment. Furthermore, the retention behavior of uric acid on the ion‐exclusion column was researched when pure water and 1 mmol·L?1 HCl were used as mobile phase, respectively. The stability of uric acid was also further investigated within 28 days. In this method, the linear range of the calibration curve for uric acid was 0.25–100 mg·L?1, and the detection limit calculated at S/N=3 was 0.02 mg·L?1. The proposed ion‐exclusion chromatographic method has been used for the determination of uric acid in human urine.  相似文献   

3.
The minimal energy conformations of o-benzosemiquinone anion radical were calculated for several cases of assignments by using the INDO method and the molecular geometry adjusting method. In order to know the effect of lithium ion in the solvent, the minimal energy conformations of the system of Li? O? H and o-benzosemiquinone anion radical were calculated. The calculations of the minimal energy conformations of this radical in t-butyl alcohol, alkaline aqueous ethanol, alkaline water, neutral methanol, and acetonitrile were carried out. The total energies of the minimal energy conformations in the assignment |A3| > |A4| were lower than those in the assignment |A3| < |A4|.  相似文献   

4.
An ab initio molecular potential model is employed in this paper to show its excellent predictability for the transport properties of a polyatomic gas from molecular dynamics simulations. A quantum mechanical treatment of molecular vibrational energies is included in the Green and Kubo integral formulas for the calculation of the thermal conductivity by the Metropolis Monte Carlo method. Using CO2 gas as an example, the fluid transport properties in the temperature range of 300–1000 K are calculated without using any experimental data. The accuracy of the calculated transport properties is significantly improved by the present model, especially for the thermal conductivity. The average deviations of the calculated results from the experimental data for self-diffusion coefficient, shear viscosity, thermal conductivity are, respectively, 2.32%, 0.71% and 2.30%.  相似文献   

5.
Two chromatographic methods, high-performance TLC (HPTLC) and HPLC, were developed and used for separation and quantitative determination of chlorogenic acid in green coffee bean extracts. For HPTLC silica gel Kieselgel 60 F 254 plates with ethyl acetate/dichlormethane/formic acid/acetic acid/water (100:25:10:10:11, v/v/v/v/v) as mobile phase were used. Densitometric determination of chlorogenic acid by HPTLC was performed at 330 nm. A gradient RP HPLC method was carried out at 330 nm. All necessary validation tests for both methods were developed for their comparison. There were no statistically significant differences between HPLC and HPTLC for quantitative determination of chlorogenic acid according to the test of equality of the means.  相似文献   

6.
《Fluid Phase Equilibria》2005,233(1):34-46
A series of bicanonical ensemble Monte Carlo (BC MC) simulations has been performed to calculate Na+ hydration Gibbs energy in aqueous solution. The hydration Gibbs energy of Na+ ion in aqueous solution is the difference between formation free energies of Na+ (H2O)n and (H2O)n clusters at n  α. The convergence of the hydration free energy to bulk water value is fast, and the results at n = 60 turned out to be in good agreement with experimental ones and those calculated using free energy perturbation method [1]. The ion–water interaction has been described by Aqvist's pair potential [1] and SPC model [2] has been used for water–water interactions. The behaviour of the absolute Gibbs energy, the entropy, the internal energy of the clusters and the development of hydration shells’ structure with the increase of the number of water molecules are discussed.  相似文献   

7.
The thermal behaviour of a sol-gel prepared hybride silica gel (HSiO sample) in the 20–1000°C interval was studied by coupled thermogravimetric-mass spectrometric (TG-MS) analyses carried out at various heating rates. Thermogravimetric curve elaboration allowed the determination of the flex temperatures, corresponding to the maximum release rate of gas-evolved compounds, and to calculate the activation energy of the overall process. The mass spectrometric data, registered in the TG-MS measurements, were treated to discriminate the single reactions accounting for the release of each compound, among which water, dihydrofuran and various silane-and siloxane-derived species. These results were used to calculate the comprehensive activation energy and also those of each of the released species. Different methods of data processing were used to achieve better reliability of calculated activation energies. The discussion focuses on the high extension of kinetic information arising from MS data processing and on the advantage of identifying the contribution of single reactions, although they occur simultaneously during the heating process. In this respect, good agreement was found between the activation energies of the overall process calculated by separately processing TG and MS data. By processing MS data, the same agreement was observed in the comparison between the activation energy calculated for the overall thermal process and in the sum of the weighed activation energies of the reaction of each released compound.  相似文献   

8.
Densities and dynamic viscosities for methanol or ethanol with water, ethyl acetate, and methyl acetate at several temperatures T = (293.15, 298.15, and 303.15) K have been measured over the whole composition range and 0.1 MPa, along with the properties of the pure components. Excess molar volumes, viscosity deviations, and excess free energy of activation for the binary systems at the above-mentioned temperatures, were calculated and fitted to the Redlich-Kister equation to determine the fitting parameters and the root-mean-square deviations. UNIQUAC equation was used to correlate the experimental viscosity data. The UNIFAC-VISCO method and ASOG-VISCO method, based on contribution groups, were used to predict the dynamic viscosities of the binary mixtures.  相似文献   

9.
Despite their well-known drawbacks, the approaches of continuum electrostatics are widely used at the analysis of the energies of solvation and reorganization. We propose a method to check the applicability of these approaches in the determination of the solvation energy, which is based on measuring the difference of redox potentials ΔE of two consecutive redox reactions, e.g. for the pairs Co(Cp) 2 + /Co(Cp)2/Co(Cp) 2 ? (here, Cp is cyclopentadienyl). In this difference, the solvophobic effects and the liquid junction potential between the working and reference electrodes, which is impossible to measure, cancel out. From the difference of ΔE in two different solvents, the sum of the electrostatic components of the cation-and anion-transfer energies is determined. It is shown that, for large low-charged ions in aprotic media, the continuum electrostatics proves to be true in a wide range of dielectric permittivities including those typical for proteins. The Stokes shift of fluorescence spectra for proflavine (PF) showed that the water reorganization energy and, hence, the energy of the static dielectric response are anomalously high. To study this effect on the solvation energy, we determined the redox potentials of the Co(Cp) 2 + /Co(Cp)2 pair in a number of water-organic media. The organic cosolvent breaks the water structure and reduces the reorganization energy. Accordingly, the redox potential turns more positive. This allowed us to determine the energy of transfer of Co(Cp) 2 + ions (and, hence, of other ions) nonviolated by the water structure specifics. The experimental energies of the acetate transfer exceed those calculated by an order of magnitude. This demonstrates the incorrectness of the widely used semicontinuum calculations of the pK of ionogenic groups of proteins. A new algorithm, which permits overcoming this discrepancy, is proposed, namely, the short-range interactions are taken into account based on the experimental energies of the transfer to a model DMF solvent, while the transfer energy from this solvent to the protein is calculated electrostatically. The energy of the ion charging in a protein consists of two physically different components, namely, the charging energy in the pre-existing field of protein dipoles and charges and the energy of the dielectric response of the medium. The former energy is determined by the electronic polarization of the protein (its optical dielectric permittivity), while the latter is determined by all kinds of polarization (static permittivity). Taking into account all the aforementioned peculiarities leads to reasonable agreement with the experiment when estimating the pK of certain groups in α-chymotrypsin. These calculations as well as experimental data (both our and taken form the literature (molecular dynamics)) point to the enhanced dielectric permittivity of the outer layers of proteins.  相似文献   

10.
Summary A procedure for determining Hg(II) in water has been worked out. The cation reacts with bromine and fluorescein to form an ionic pair (ionic association) which is extracted with n-butyl acetate, and has an emission peak at 476 nm and an excitation peak at 452 nm. On optimum determination conditions, the detection limit was 0.4 ng ml–1 and the linear range 1–20 ng ml–1. The influence of different chemical species present in water samples was studied and the method was applied to determine Hg(II) in synthetic samples of water and in natural water with good recovery rates. In order to determine Hg(II) in samples of urban waste water, a simple pretreatment with HNO3 is required. The method can be used to monitor Hg(II) contamination in water.  相似文献   

11.
A fast, sensitive and specific method for routine determination of residues from Chlormequat (CAS no. 7003-89-6) is described. The method is based on a simple clean-up using an SPE-C18 cartridge, high-performance liquid chromatography on a standard C18 column (Spherisorb S5 ODS1) and specific detection and quantification by electrospray mass spectrometry (LC-MS/MS). 13C-Chlormequat was synthesised for use as internal standard. Samples were extracted with methanol – water – acetic acid. Internal standard and ammonium acetate were added before C18-cartridge clean up and residues eluted with methanol – water – acetic acid, containing 50 mM ammonium acetate. Chromatographic separation was achieved using a solvent composed of acetonitrile – methanol – water – acetic acid (53:21:25:1 by volume), containing 50 mM ammonium acetate. Electrospray ionisation mass spectrometry was employed using m/z 58 (daughter ion of the Chlormequat quaternary ammonium ion, m/z 122) and m/z 61 (daughter ion of the 13C-Chlormequat quaternary ammonium ion, m/z 125) for quantification. The LC analysis time was 15 min and the limit of detection of the analytical method was 9 μg/kg. The performance of the method was demonstrated analysing grain material from an inter-comparison study. In Denmark the primary use of Chlormequat chloride (CCC, cycocel, or chlorocholin chloride, CAS no. 999-81-5) is for winter cereals and 11 such winter wheat samples from the Danish National Pesticide Survey were analysed. Residue contents were from below 0.01 up to 0.45 mg/kg, and thus below the EU maximum residue level of 2.0 mg/kg for wheat. Received: 22 December 1997 / Revised: 29 January 1998 / Accepted: 31 January 1998  相似文献   

12.
Ion transport has been widely used for various applications such as sensing, desalination and energy conversion; however, nearly all applications are based on steady-state ion transport. Herein, we for the first time demonstrate the capability of transient ion transport for in vivo sensing with both high spatial (∼μm) and temporal (∼ms) resolution by using pH as the model target. Transient ion transport behavior (i.e., time-dependent ion current change) was observed by applying high-frequency pulse potential. Importantly, we proposed the ion distribution transient model for this time-dependent ion transport behavior. With this model, the temporal resolution of the as-developed pH microsensor based on ion current was improved to the ms level, thus satisfying the requirement of neurochemical recording. Moreover, our microsensor features good reproducibility, selectivity, and reversibility, and can thus real-time monitor the pH change in living rat brains. This study demonstrates the first example of in vivo sensing based on ion transport, opening a new way to neurochemical monitoring with ultrahigh spatiotemporal resolution. This study is also helpful to understand the transient process of asymmetric ion transport.

Micrometer-scale transient ion transport has been successfully used for constructing a high spatiotemporal resolution and performance microsensor, which could be used for real-time monitoring the change of pH in rat brains.  相似文献   

13.
Structural water molecule 301 found at the interface of HIV protease-inhibitor complexes function as a hydrogen bond (H-bond) donor to carbonyl groups of the inhibitor as well as H-bond acceptor to amide/amine groups of the flap region of the protease. In this study, six systems of HIV protease-inhibitor complexes were analyzed, which have the presence of this "conserved" structural water molecule using a two-layer QM/MM ONIOM method. The combination of QM/MM and QM method enabled the calculation of strain energies of the bound ligands as well as the determination of their binding energies in the ligand-water and ligand-water-protease complexes. Although the ligand experiences considerable strain in the protein bound structure, the H-bond interactions through the structural water overcomes this strain effect to give a net stability in the range of 16-24 kcal/mol. For instance, in 1HIV system, the strain energy of the ligand was 12.2 kcal/mol, whereas the binding energy associated with the structural water molecule was 20.8 kcal/mol. In most of the cases, the calculated binding energy of structural water molecule showed the same trend as that of the experimental binding free energy values. Further, the classical MD simulations carried out on 1HVL system with and without structural water 301 showed that this conserved water molecule enhances the H-bond dynamics occurring at the Asp-bound active site region of the protease-inhibitor system, and therefore it will have a direct influence on the mechanism of drug action.  相似文献   

14.
A theoretical study of ion hydration using the statistical thermodynamic supermolecule-continuum method is described. The cell and shell methods are used for configurational averaging. Enthalpies, free energies and entropies are calculated for Li+, Na+, K+, F and Cl each four coordinated with water. The results are in reasonable accord with experiment. A comparison of the site method, cell method and shell method results is presented. The supermolecule-continuum approach to solvent effects seems to be capable of accommodating essential features for the calculation of solvation energy and solvent effects on structure and properties.  相似文献   

15.
Despite their prevalent use as a surrogate for partitioning of pharmacologically active solutes across lipid membranes, the mechanism of transport across water/octanol phase boundaries has remained unexplored. Using molecular dynamics, graph theoretical, cluster analysis, and Langevin dynamics, we reveal an elegant mechanism for the simplest solute, water. Self-assembled octanol at the interface reversibly binds water and swings like the hinge of a door to bring water into a semi-organized second interfacial layer (a “bilayer island”). This mechanism is distinct from well-known lipid flipping and water transport processes in protein-free membranes, highlighting important limitations in the water/octanol proxy. Interestingly, the collective and reversible behavior is well-described by a double well potential energy function, with the two stable states being the water bound to the hinge on either side of the interface. The function of the hinge for transport, coupled with the underlying double well energy landscape, is akin to a molecular switch or shuttle that functions under equilibrium and is driven by the differential free energies of solvation of H2O across the interface. This example successfully operates within the dynamic motion of instantaneous surface fluctuations, a feature that expands upon traditional approaches toward controlled solute transport that act to avoid or circumvent the dynamic nature of the interface.

Despite their pharmacological relevance, the mechanism of transport across water/octanol phase boundaries has remained unexplored. Octanol molecular assemblies are demonstrated to reversibly bind water and swing like the hinge of a door.  相似文献   

16.
Interaction energies of increasingly methylated ammonium ions with aromatics (benzene, phenol, indole) and with acetate were calculated in vacuo and under the influence of polar media in order to model the binding of ammonium group containing ligands to receptors that offer either carboxylic or aromatic amino acid side chains as ligand anchoring alternatives. Semiempirical, ab-initio and DFT methods were applied to in vacuo calculations while the latter was used at the B3LYP6-31G(d) level in connection with the SCRF procedure of Miertu et al. [Chem. Phys. 55 (1981) 117] to simulate the free energies of transfer from the aqueous (=78.3) to the proteinaceous medium (=20). The in vacuo absolute interaction energies decrease with increasing methylation but the opposite becomes true under the influence of SCRF; only in the example of the tetramethylammonium ion the free energy stays negative. Concerning the interaction of the latter with acetate, it is only slightly more favourable than the binding of tetramethylammonium to indole. This result indicates that aromatic side chains are thermodynamically comparable to the carboxylic ones in the recognition process of the respective receptors for acetylcholine type ligands.  相似文献   

17.
18.
Density functional theory, B3LYP/6‐31G** and B3LYP/6‐311+G(2d,p), and ab initio MP2/6‐31G** calculations have been carried out to investigate the conformers, transition states, and energy barriers of the conformational processes of oxalic acid and its anions. QCISD/6‐31G** geometrical optimization is also performed in the stable forms. Its calculated energy differences between the two most stable conformers are very near to the related observed value at 7.0 kJ/mol. It is found that the structures and relative energies of oxalic acid conformers predicted by these methods show similar results, and that the conformer L1 (C2h) with the double‐interfunctional‐groups hydrogen bonds is the most stable conformer. The magnitude of hydrogen bond energies depends on the energy differences of various optimized structures. The hydrogen bond energies will be about 32 kJ/mol for interfunctional groups, 17 kJ/mol for weak interfunctional groups, 24 kJ/mol for intra‐COOH in (COOH)2, and 60 kJ/mol for interfunctional groups in (COOH)COO−1 ion if calculated using the B3LYP/6‐311+G(2d,p) method. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 541–551, 2000  相似文献   

19.
The solvation free energy of an ion in an organic solvent is calculated using our new electrostatic method, and is combined with the hydration free energy to yield the free energy of transfer of the ion from water to the organic solvent. It is shown that for the solvent systems water/1,2-dichloroethane, dichloromethane, chloroform, o-dichlorobenzene, chlorobenzene, and nitrobenzene there is good agreement between the calculated ΔGto values and the free energies for partition of ions, ΔGpo = -RTlnP. For organic phases in which water is quite soluble, for example 1-octanol, 1-pentanol, isopentanol, ethyl acetate, and methylisobutylketone, the calculated ΔGto values are always more positive than the observed partition values, ΔGpo. It is shown that this effect is due to hydration of the ions in the wet organic phase and by calculations on a solvation model in which an ion in the wet organic phase is surrounded by a layer of water of thickness 3.1 Å (the diameter of a water molecule) it is concluded that in the first group of solvents most ions are unhydrated in the wet organic phase; Cl is an exception and is partially hydrated. In the second group of wet solvents, all ions are at least partially hydrated, and Cl is hydrated by a layer of water that must be even thicker than the diameter of a water molecule.  相似文献   

20.
A sensitive and reliable LC‐ESI‐MS method for the determination of salvianolic acid C in rat plasma has been developed and validated. Plasma samples were prepared by liquid–liquid extraction with ethyl acetate and separated on a Zorbax SB‐C18 column (3.5 µm, 2.1 × 100 mm) at a flow rate of 0.3 mL/min using acetonitrile–water as mobile phase. The detection was carried out by a single quadrupole mass spectrometer with electrospray ionization source and selected ion monitoring mode. Linearity was obtained for salvianolic acid C ranging from 5 to 1000 ng/mL. The intra‐ and inter‐day precisions (RSD, %) didn't exceed 9.96%, and the accuracy (RE, %) were all within ±3.64%. The average recoveries of the analyte and internal standard were >89.13%. Salvianolic acid C was proved to be stable during all sample storage, preparation and analytic procedures. The validated method was successfully applied to pharmacokinetic study after oral and intravenous administration of salvianolic acid C to rats. The absolute oral bioavailability of salvianolic acid C was 0.29 ± 0.05%. This method was further applied to simultaneous determination of salvianolic acid A, salvianolic acid B and salvianolic acid C in rat plasma and showed good practicability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号